
Dredd
Release latest

Apiary

Jul 19, 2023

CONTENTS

1 Features 3
1.1 Supported API Description Formats . 3
1.2 Supported Hooks Languages . 3
1.3 Supported Systems . 3

2 Contents 5
2.1 Installation . 5
2.2 Quickstart . 7
2.3 How It Works . 10
2.4 How-To Guides . 15
2.5 Command-line Interface . 37
2.6 Using Dredd as a JavaScript Library . 40
2.7 Hooks . 42
2.8 Data Structures . 81
2.9 Internals . 85

3 Useful Links 93

4 Example Applications 95

Index 97

i

ii

Dredd, Release latest

Dredd is a language-agnostic command-line tool for validating API description document against
backend implementation of the API.

Dredd reads your API description and step by step validates whether your API implementation replies with responses
as they are described in the documentation.

CONTENTS 1

https://www.npmjs.com/package/dredd
https://circleci.com/gh/apiaryio/dredd/tree/master
https://ci.appveyor.com/project/Apiary/dredd/branch/master
https://readthedocs.org/projects/dredd/builds/
https://coveralls.io/github/apiaryio/dredd
https://snyk.io/test/npm/dredd

Dredd, Release latest

2 CONTENTS

CHAPTER

ONE

FEATURES

1.1 Supported API Description Formats

• API Blueprint

• OpenAPI 2 (formerly known as Swagger)

• OpenAPI 3 (experimental, contributions welcome!)

1.2 Supported Hooks Languages

Dredd supports writing hooks — a glue code for each test setup and teardown. Following languages are supported:

• Go

• Node.js (JavaScript)

• Perl

• PHP

• Python

• Ruby

• Rust

• Didn’t find your favorite language? Add a new one!

1.3 Supported Systems

• Linux, macOS, Windows, . . .

• Travis CI, CircleCI, Jenkins, AppVeyor, . . .

3

https://apiblueprint.org
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://github.com/apiaryio/api-elements.js/blob/master/packages/openapi3-parser/STATUS.md
https://travis-ci.org
https://circleci.com
https://jenkins.io
https://www.appveyor.com

Dredd, Release latest

4 Chapter 1. Features

CHAPTER

TWO

CONTENTS

2.1 Installation

There are several options how to run Dredd on your machine or in your Continuous Integration.

2.1.1 Docker

If you are familiar with Docker, you can get started with Dredd quickly by using the ready-made apiaryio/dredd image.
Specifics of running Dredd inside Docker are:

• you won’t be able to use the --server option (see Docker Compose)

• setting up non-JavaScript hooks is less straightforward (see Hooks inside Docker)

macOS, Linux

Following line runs the dredd command using the apiaryio/dredd Docker image:

$ docker run -it -v $PWD:/api -w /api apiaryio/dredd dredd

As an example of how to pass arguments, following line runs the dredd init command:

$ docker run -it -v $PWD:/api -w /api apiaryio/dredd dredd init

When testing a service running on host (e.g. localhost:8080), you need to use --network host parameter in
Docker command. If you are using Docker for Mac, you should use host.docker.internal instead of 127.0.0.1/localhost.

Windows

Following line runs the dredd command using the apiaryio/dredd Docker image:

C:\Users\Susan> docker run -it -v ${pwd}:/api -w /api apiaryio/dredd dredd

As an example of how to pass arguments, following line runs the dredd init command:

C:\Users\Susan> docker run -it -v ${pwd}:/api -w /api apiaryio/dredd dredd init

5

https://docs.docker.com
https://hub.docker.com/r/apiaryio/dredd/
https://hub.docker.com/r/apiaryio/dredd/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/networking/
https://hub.docker.com/r/apiaryio/dredd/

Dredd, Release latest

Docker Compose

Inside Docker it’s impossible for Dredd to manage child processes, so the --server and --language options won’t
work properly.

Instead, you should have separate containers for each process and run them together with Dredd using Docker Compose.
You can use -\-abort-on-container-exit and -\-exit-code-from with Docker Compose to manage the tear down of all the
other containers when the Dredd tests finish.

2.1.2 npm

Dredd is a command-line application written in JavaScript (to be more precise, in Node.js) and as such can be installed
using npm.

Installing Node.js and npm

macOS

• If you’re using Homebrew, run brew install node

• Otherwise download Node.js from the official website and install it using the downloaded installer

• Make sure both node --version and npm --version work in your Terminal

• Node.js needs to be at least version 8

Linux

• Install Node.js as a system package

• In case your Linux distribution calls the Node.js binary nodejs, please follow this advice to have it as node
instead

• Make sure both node --version and npm --version work in your Terminal

• Node.js needs to be at least version 8

Windows

• Download Node.js from the official website and install it using the downloaded installer

• Make sure both node --version and npm --version work in your Command Prompt

• Node.js needs to be at least version 8

Note: If your internet connection is restricted (VPN, firewall, proxy), you need to configure npm:

npm config set proxy "http://proxy.example.com:8080"
npm config set https-proxy "https://proxy.example.com:8080"

Otherwise you’ll get similar errors during Dredd installation:

npmERR! Cannot read property 'path' of null
npmERR!code ECONNRESET
npmERR!network socket hang up

Later be sure to read how to set up Dredd to correctly work with proxies.

6 Chapter 2. Contents

https://docs.docker.com/compose/overview/
https://stackoverflow.com/a/49485880/325365
https://nodejs.org
https://www.npmjs.com
https://brew.sh/
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/
https://stackoverflow.com/a/18130296/325365
https://nodejs.org/en/download/
https://docs.npmjs.com/cli/v6/using-npm/config#https-proxy

Dredd, Release latest

Installing Dredd

Now that you have everything prepared, you can finally run npm to install Dredd:

npm install dredd --global

Note: If you get EACCES permissions errors, try one of the officially recommended solutions. In the worst case, you
can run the command again with sudo.

You can verify Dredd is correctly installed by printing its version number:

dredd --version

Now you can start using Dredd!

Adding Dredd as a dev dependency

If your API project is also an npm package, you may want to add Dredd as a dev dependency instead of installing it
globally.

• Make sure your project is an npm package with a package.json file

• In the root of the project run npm install dredd --save-dev

• Once the installation is complete, you can run Dredd from the root of the project as npx dredd

This is how Dredd is installed in the dredd-example repository, so you may want to see it for inspiration.

2.2 Quickstart

In following tutorial you can quickly learn how to test a simple HTTP API application with Dredd. The tested applica-
tion will be very simple backend written in Express.js.

2.2.1 Install Dredd

$ npm install -g dredd

If you’re not familiar with the Node.js ecosystem or you bump into any issues, follow the installation guide.

2.2.2 Document Your API

First, let’s design the API we are about to build and test. That means you will need to create an API description file,
which will document how your API should look like. Dredd supports two formats of API description documents:

• API Blueprint

• OpenAPI 2 (formerly known as Swagger)

API Blueprint

If you choose API Blueprint, create a file called api-description.apib in the root of your project and save it with
following content:

2.2. Quickstart 7

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://github.com/apiaryio/dredd-example
http://expressjs.com/starter/hello-world.html
https://apiblueprint.org
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

Dredd, Release latest

FORMAT: 1A

GET /
+ Response 200 (application/json; charset=utf-8)

{"message": "Hello World!"}

OpenAPI 2

If you choose OpenAPI 2, create a file called api-description.yml:

swagger: '2.0'
info:
version: '1.0'
title: Example API
license:
name: MIT

host: www.example.com
basePath: /
schemes:
- http

paths:
/:
get:
produces:
- application/json; charset=utf-8

responses:
'200':

description: ''
schema:
type: object
properties:
message:
type: string

required:
- message

2.2.3 Implement Your API

As we mentioned in the beginning, we’ll use Express.js to implement the API. Install the framework by npm:

$ npm init
$ npm install express --save

Now let’s code the thing! Create a file called app.js with following contents:

var app = require('express')();

app.get('/', function(req, res) {
res.json({message: 'Hello World!'});

})

app.listen(3000);

8 Chapter 2. Contents

http://expressjs.com/starter/hello-world.html

Dredd, Release latest

2.2.4 Test Your API

At this moment, the implementation is ready to be tested. Let’s run the server as a background process and let’s test it:

$ node app.js &

Finally, let Dredd validate whether your freshly implemented API complies with the description you have:

API Blueprint

$ dredd api-description.apib http://127.0.0.1:3000

OpenAPI 2

$ dredd api-description.yml http://127.0.0.1:3000

2.2.5 Configure Dredd

Dredd can be configured by many CLI options. It’s recommended to save your Dredd configuration alongside your
project, so it’s easier to repeatedly execute always the same test run. Use interactive configuration wizard to create
dredd.yml file in the root of your project:

$ dredd init
? Location of the API description document: api-description.apib
? Command to start API backend server e.g. (bundle exec rails server)
? URL of tested API endpoint: http://127.0.0.1:3000
? Programming language of hooks:
nodejs
python
ruby
...

? Dredd is best served with Continuous Integration. Create CircleCI config for Dredd? Yes

Now you can start test run just by typing dredd!

$ dredd

2.2.6 Use Hooks

Dredd’s hooks enable you to write some glue code in your favorite language to support enhanced scenarios in your
API tests. Read the documentation about hooks to learn more on how to write them. Choose your language and install
corresponding hooks handler library.

2.2. Quickstart 9

Dredd, Release latest

2.2.7 Advanced Examples

For more complex example applications, please refer to:

• Express.js

• Laravel

• Laravel & OpenAPI 3

• Ruby on Rails

2.3 How It Works

In a nutshell, Dredd does following:

1. Takes your API description document,

2. creates expectations based on requests and responses documented in the document,

3. makes requests to tested API,

4. checks whether API responses match the documented responses,

5. reports the results.

2.3.1 Versioning

Dredd follows Semantic Versioning. To ensure certain stability of your Dredd installation (e.g. in CI), pin the version
accordingly. You can also use release tags:

• npm install dredd - Installs the latest published version including experimental pre-release versions.

• npm install dredd@stable - Skips experimental pre-release versions. Recommended for CI installations.

If the User-Agent header isn’t overridden in the API description document, Dredd uses it for sending information
about its version number along with every HTTP request it does.

2.3.2 Execution Life Cycle

Following execution life cycle documentation should help you to understand how Dredd works internally and which
action goes after which.

1. Load and parse API description documents

• Report parse errors and warnings

2. Pre-run API description check

• Missing example values for URI template parameters

• Required parameters present in URI

• Report non-parseable JSON bodies

• Report invalid URI parameters

• Report invalid URI templates

3. Compile HTTP transactions from API description documents

10 Chapter 2. Contents

https://github.com/apiaryio/dredd-example
https://github.com/ddelnano/dredd-hooks-php/wiki/Laravel-Example
https://github.com/AndyWendt/laravel-dredd-openapi-v3
https://gitlab.com/theodorton/dredd-test-rails/
https://semver.org/

Dredd, Release latest

• Inherit headers

• Inherit parameters

• Expand URI templates with parameters

4. Load hooks

5. Test run

• Report test run start

• Run beforeAll hooks

• For each compiled transaction:

– Report test start

– Run beforeEach hook

– Run before hook

– Send HTTP request

– Receive HTTP response

– Run beforeEachValidation hook

– Run beforeValidation hook

– Perform validation

– Run after hook

– Run afterEach hook

– Report test end with result for in-progress reporting

• Run afterAll hooks

6. Report test run end with result statistics

2.3.3 Automatic Expectations

Dredd automatically generates expectations on HTTP responses based on examples in the API description with use of
the Gavel library. Please refer to Gavel’s rules if you want know more.

Response Headers Expectations

• All headers specified in the API description must be present in the response.

• Names of headers are validated in the case-insensitive way.

• Only values of headers significant for content negotiation are validated.

• All other headers values can differ.

When using OpenAPI 2, headers are taken from response.headers (spec). HTTP headers significant for content
negotiation are inferred according to following rules:

• produces (spec) is propagated as response’s Content-Type header.

• Response’s Content-Type header overrides any produces.

2.3. How It Works 11

https://github.com/apiaryio/gavel.js
https://relishapp.com/apiary/gavel/docs
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseheaders
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerproduces

Dredd, Release latest

Response Body Expectations

If the HTTP response body is JSON, Dredd validates only its structure. Bodies in any other format are validated as
plain text.

To validate the structure Dredd uses JSON Schema inferred from the API description under test. The effective JSON
Schema is taken from following places (the order goes from the highest priority to the lowest):

API Blueprint

1. Schema section - provided custom JSON Schema (Draft 4, Draft 6, and Draft 7) will be used.

2. Attributes section with data structure description in MSON - API Blueprint parser automatically generates JSON
Schema from MSON.

3. Body section with sample JSON payload - Gavel, which is responsible for validation in Dredd, automatically
infers some basic expectations described below.

This order exactly follows the API Blueprint specification.

OpenAPI 2

1. response.schema (spec) - provided JSON Schema will be used.

2. response.examples (spec) with sample JSON payload - Gavel, which is responsible for validation in Dredd,
automatically infers some basic expectations described below.

Gavel’s Expectations

• All JSON keys on any level given in the sample must be present in the response’s JSON.

• Response’s JSON values must be of the same JSON primitive type.

• All JSON values can differ.

• Arrays can have additional items, type or structure of the items is not validated.

• Plain text must match perfectly.

Custom Expectations

You can make your own custom expectations in hooks. For instance, check out how to employ Chai.js assertions.

2.3.4 Making Your API Description Ready for Testing

It’s very likely that your API description document will not be testable as is. This section should help you to learn how
to solve the most common issues.

12 Chapter 2. Contents

https://json-schema.org
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-wright-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/tutorial.html
https://apiblueprint.org/documentation/specification.html#def-body-section
https://github.com/apiaryio/gavel.js
https://apiblueprint.org/documentation/specification.html#relation-of-body-schema-and-attributes-sections
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseschema
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseexamples
https://github.com/apiaryio/gavel.js

Dredd, Release latest

URI Parameters

Both API Blueprint and OpenAPI 2 allow usage of URI templates (API Blueprint fully implements RFC 6570, Ope-
nAPI 2 templates are much simpler). In order to have an API description which is testable, you need to describe all
required parameters used in URI (path or query) and provide sample values to make Dredd able to expand URI tem-
plates with given sample values. Following rules apply when Dredd interpolates variables in a templated URI, ordered
by precedence:

1. Sample value, in OpenAPI 2 available as the x-example vendor extension property (docs).

2. Value of default.

3. First value from enum.

If Dredd isn’t able to infer any value for a required parameter, it will terminate the test run and complain that the
parameter is ambiguous.

Note: The implementation of API Blueprint’s request-specific parameters is still in progress and there’s only experi-
mental support for it in Dredd as of now.

Request Headers

In OpenAPI 2 documents, HTTP headers are inferred from "in": "header" parameters (spec). HTTP headers
significant for content negotiation are inferred according to following rules:

• consumes (spec) is propagated as request’s Content-Type header.

• produces (spec) is propagated as request’s Accept header.

• If request body parameters are specified as "in": "formData", request’s Content-Type header is set to
application/x-www-form-urlencoded.

Request Body

API Blueprint

The effective request body is taken from following places (the order goes from the highest priority to the lowest):

1. Body section with sample JSON payload.

2. Attributes section with data structure description in MSON - API Blueprint parser automatically generates sample
JSON payload from MSON.

This order exactly follows the API Blueprint specification.

OpenAPI 2

The effective request body is inferred from "in": "body" and "in": "formData" parameters (spec).

If body parameter has schema.example (spec), it is used as a raw JSON sample for the request body. If it’s not present,
Dredd’s OpenAPI 2 adapter generates sample values from the JSON Schema provided in the schema (spec) property.
Following rules apply when the adapter fills values of the properties, ordered by precedence:

1. Value of default.

2. First value from enum.

2.3. How It Works 13

https://apiblueprint.org
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://tools.ietf.org/html/rfc6570.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-parameterobject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerconsumes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerproduces
https://apiblueprint.org/documentation/specification.html#def-body-section
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/tutorial.html
https://apiblueprint.org/documentation/specification.html#relation-of-body-schema-and-attributes-sections
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-parameterobject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-schemaexample
https://github.com/apiaryio/api-elements.js/tree/master/packages/openapi2-parser
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-parameterschema

Dredd, Release latest

3. Dummy, generated value.

Empty Response Body

If there is no body example or schema specified for the response in your API description document, Dredd won’t imply
any assertions. Any server response will be considered as valid.

If you want to enforce the incoming body is empty, you can use hooks:

const hooks = require('hooks');

hooks.beforeEachValidation((transaction, done) => {
if (transaction.real.body) {
transaction.fail = 'The response body must be empty';

}
done();

});

In case of responses with 204 or 205 status codes Dredd still behaves the same way, but it warns about violating the
RFC 7231 when the responses have non-empty bodies.

2.3.5 Choosing HTTP Transactions

API Blueprint

While API Blueprint allows specifying multiple requests and responses in any combination (see specification for the
action section), Dredd currently supports just separated HTTP transaction pairs like this:

+ Request
+ Response

+ Request
+ Response

In other words, Dredd always selects just the first response for each request.

Note: Improving the support for multiple requests and responses is under development. Refer to issues #25 and #78
for details. Support for URI parameters specific to a single request within one action is also limited. Solving #227
should unblock many related problems. Also see Multiple Requests and Responses guide for workarounds.

OpenAPI 2

The OpenAPI 2 format allows to specify multiple responses for a single operation. By default Dredd tests only responses
with 2xx status codes. Responses with other codes are marked as skipped and can be activated in hooks - see the Multiple
Requests and Responses how-to guide.

In produces (spec) and consumes (spec), only JSON media types are supported. Only the first JSON media type in
produces is effective, others are skipped. Other media types are respected only when provided with explicit examples.

Default response is ignored by Dredd unless it is the only available response. In that case, the default response is
assumed to have HTTP 200 status code.

14 Chapter 2. Contents

https://tools.ietf.org/html/rfc7231.html
https://apiblueprint.org
https://apiblueprint.org/documentation/specification.html#def-action-section
https://github.com/apiaryio/dredd/issues/25
https://github.com/apiaryio/dredd/issues/78
https://github.com/apiaryio/dredd/issues/227
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerproduces
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerconsumes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseexamples
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responsesdefault

Dredd, Release latest

2.3.6 Security

Depending on what you test and how, output of Dredd may contain sensitive data.

Mind that if you run Dredd in a CI server provided as a service (such as CircleCI, Travis CI, etc.), you are disclosing
the CLI output of Dredd to third parties.

When using Apiary Reporter and Apiary Tests, you are sending your testing data to Apiary (Dredd creators and main-
tainers). See their Terms of Service and Privacy Policy. Which data exactly is being sent to Apiary?

• Complete API description under test. This means your API Blueprint or OpenAPI 2 files. The API description
is stored encrypted in Apiary.

• Complete testing results. Those can contain details of all requests made to the server under test and their
responses. Apiary stores this data unencrypted, even if the original communication between Dredd and the API
server under test happens to be over HTTPS. See Apiary Reporter Test Data for detailed description of what is
sent. You can sanitize it before it gets sent.

• Little meta data about your environment. Contents of environment variables TRAVIS, CIRCLE, CI, DRONE,
BUILD_ID, DREDD_AGENT, USER, and DREDD_HOSTNAME can be sent to Apiary. Your hostname, version of your
Dredd installation, and type, release and architecture of your OS can be sent as well. Apiary stores this data
unencrypted.

See also guidelines on how to develop Apiary Reporter.

2.3.7 Using HTTP(S) Proxy

You can tell Dredd to use HTTP(S) proxy for:

• downloading API description documents (the positional argument api-description-document or the --path
option accepts also URL)

• reporting to Apiary

Dredd respects HTTP_PROXY, HTTPS_PROXY, NO_PROXY, http_proxy, https_proxy, and no_proxy environment
variables. For more information on how those work see relevant section of the underlying library’s documentation.

Dredd intentionally does not support HTTP(S) proxies for testing. Proxy can deliberately modify requests and
responses or to behave in a very different way then the server under test. Testing over a proxy is, in the first place,
testing of the proxy itself. That makes the test results irrelevant (and hard to debug).

2.4 How-To Guides

In the following guides you can find tips and best practices how to cope with some common tasks. While searching
this page for particular keywords can give you quick results, reading the whole section should help you to learn some
of the Dredd’s core concepts and usual ways how to approach problems when testing with Dredd.

2.4. How-To Guides 15

https://circleci.com
https://travis-ci.org
https://apiary.io
https://apiary.io/tos
https://apiary.io/privacy
https://en.wikipedia.org/wiki/Hostname
https://nodejs.org/api/os.html#os_os_type
https://nodejs.org/api/os.html#os_os_release
https://nodejs.org/api/os.html#os_os_arch
https://github.com/request/request#user-content-proxies

Dredd, Release latest

2.4.1 Isolation of HTTP Transactions

Requests in the API description usually aren’t sorted in order to comply with logical workflow of the tested application.
To get the best results from testing with Dredd, you should ensure each resource action (API Blueprint) or operation
(OpenAPI 2) is executed in isolated context. This can be easily achieved using hooks, where you can provide your own
setup and teardown code for each HTTP transaction.

You should understand that testing with Dredd is an analogy to unit tests of your application code. In unit tests, each
unit should be testable without any dependency on other units or previous tests.

Example

Common case is to solve a situation where we want to test deleting of a resource. Obviously, to test deleting of a
resource, we first need to create one. However, the order of HTTP transactions can be pretty much random in the API
description.

To solve the situation, it’s recommended to isolate the deletion test by hooks. Providing before hook, we can ensure
the database fixture will be present every time Dredd will try to send the request to delete a category item.

API Blueprint

FORMAT: 1A

Categories API

Categories [/categories]

Create a Category [POST]
+ Response 201

Category [/category/{id}]
+ Parameters

+ id: 42 (required)

Delete a Category [DELETE]
+ Response 204

Category Items [/category/{id}/items]
+ Parameters

+ id: 42 (required)

Create an Item [POST]
+ Response 201

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.apib http://127.0.0.1:3000 --names
info: Categories > Create a category
info: Category > Delete a category
info: Category Items > Create an item

Now we can create a hooks.js file. The file will contain setup and teardown of the database fixture:

16 Chapter 2. Contents

https://apiblueprint.org
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

Dredd, Release latest

hooks = require('hooks');
db = require('./lib/db');

beforeAll(function() {
db.cleanUp();

});

afterEach(function(transaction) {
db.cleanUp();

});

before('Category > Delete a Category', function() {
db.createCategory({id: 42});

});

before('Category Items > Create an Item', function() {
db.createCategory({id: 42});

});

OpenAPI 2

swagger: "2.0"
info:
version: "0.0.0"
title: Categories API
license:
name: MIT

host: www.example.com
basePath: /
schemes:
- http

consumes:
- application/json

produces:
- application/json

paths:
/categories:
post:
responses:
200:
description: ""

/category/{id}:
delete:
parameters:
- name: id
in: path
required: true
type: string
enum:

- "42"
responses:

(continues on next page)

2.4. How-To Guides 17

Dredd, Release latest

(continued from previous page)

200:
description: ""

/category/{id}/items:
post:
parameters:
- name: id
in: path
required: true
type: string
enum:
- "42"

responses:
200:
description: ""

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.yml http://127.0.0.1:3000 --names
info: /categories > POST > 200 > application/json
info: /category/{id} > DELETE > 200 > application/json
info: /category/{id}/items > POST > 200 > application/json

Now we can create a hooks.js file. The file will contain setup and teardown of the database fixture:

hooks = require('hooks');
db = require('./lib/db');

beforeAll(function() {
db.cleanUp();

});

afterEach(function(transaction) {
db.cleanUp();

});

before('/category/{id}', function() {
db.createCategory({id: 42});

});

before('/category/{id}/items', function() {
db.createCategory({id: 42});

});

18 Chapter 2. Contents

Dredd, Release latest

2.4.2 Testing API Workflows

Often you want to test a sequence of steps, a scenario, rather than just one request-response pair in isolation. Since the
API description formats are quite limited in their support of documenting scenarios, Dredd probably isn’t the best tool
to provide you with this kind of testing. There are some tricks though, which can help you to work around some of the
limitations.

Note: API Blueprint prepares direct support for testing and scenarios. Interested? Check out api-blueprint#21!

To test various scenarios, you will want to write each of them into a separate API description document. To load them
during a single test run, use the --path option.

For workflows to work properly, you’ll also need to keep shared context between individual HTTP transactions. You
can use hooks in order to achieve that. See tips on how to pass data between transactions.

API Blueprint Example

Imagine we have a simple workflow described:

FORMAT: 1A

My Scenario

POST /login

+ Request (application/json)

{"username": "john", "password": "d0e"}

+ Response 200 (application/json)

{"token": "s3cr3t"}

GET /cars

+ Response 200 (application/json)

[
{"id": "42", "color": "red"}

]

PATCH /cars/{id}
+ Parameters

+ id: 42 (string, required)

+ Request (application/json)

{"color": "yellow"}

+ Response 200 (application/json)
(continues on next page)

2.4. How-To Guides 19

https://apiblueprint.org
https://github.com/apiaryio/api-blueprint/issues/21

Dredd, Release latest

(continued from previous page)

{"id": 42, "color": "yellow"}

Writing Hooks

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.apib http://127.0.0.1:3000 --names
info: /login > POST
info: /cars > GET
info: /cars/{id} > PATCH

Now we can create a hooks.js file. The code of the file will use global stash variable to share data between requests:

hooks = require('hooks');
db = require('./lib/db');

stash = {}

// Stash the token we've got
after('/login > POST', function (transaction) {

stash.token = JSON.parse(transaction.real.body).token;
});

// Add the token to all HTTP transactions
beforeEach(function (transaction) {
if (stash.token) {
transaction.request.headers['X-Api-Key'] = stash.token

};
});

// Stash the car ID we've got
after('/cars > GET', function (transaction) {
stash.carId = JSON.parse(transaction.real.body).id;

});

// Replace car ID in request with the one we've stashed
before('/cars/{id} > PATCH', function (transaction) {
transaction.fullPath = transaction.fullPath.replace('42', stash.carId)
transaction.request.uri = transaction.fullPath

})

20 Chapter 2. Contents

Dredd, Release latest

OpenAPI 2 Example

Imagine we have a simple workflow described:

swagger: "2.0"
info:
version: "0.0.0"
title: Categories API
license:
name: MIT

host: www.example.com
basePath: /
schemes:
- http

consumes:
- application/json

produces:
- application/json

paths:
/login:
post:
parameters:
- name: body
in: body
required: true
schema:
type: object
properties:
username:
type: string

password:
type: string

responses:
200:
description: ""
schema:
type: object
properties:
token:
type: string

/cars:
get:
responses:
200:
description: ""
schema:
type: array
items:
type: object
properties:
id:
type: string

color:
(continues on next page)

2.4. How-To Guides 21

Dredd, Release latest

(continued from previous page)

type: string
/cars/{id}:
patch:
parameters:
- name: id
in: path
required: true
type: string
enum:
- "42"

- name: body
in: body
required: true
schema:
type: object
properties:
color:
type: string

responses:
200:
description: ""
schema:
type: object
properties:
id:
type: string

color:
type: string

Writing Hooks

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.yml http://127.0.0.1:3000 --names
info: /login > POST > 200 > application/json
info: /cars > GET > 200 > application/json
info: /cars/{id} > PATCH > 200 > application/json

Now we can create a hooks.js file. The code of the file will use global stash variable to share data between requests:

hooks = require('hooks');
db = require('./lib/db');

stash = {}

// Stash the token we've got
after('/login > POST > 200 > application/json', function (transaction) {

stash.token = JSON.parse(transaction.real.body).token;
});

// Add the token to all HTTP transactions
(continues on next page)

22 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

beforeEach(function (transaction) {
if (stash.token) {
transaction.request.headers['X-Api-Key'] = stash.token

};
});

// Stash the car ID we've got
after('/cars > GET > 200 > application/json', function (transaction) {

stash.carId = JSON.parse(transaction.real.body).id;
});

// Replace car ID in request with the one we've stashed
before('/cars/{id} > PATCH > 200 > application/json', function (transaction) {

transaction.fullPath = transaction.fullPath.replace('42', stash.carId)
transaction.request.uri = transaction.fullPath

})

2.4.3 Making Dredd Validation Stricter

API Blueprint or OpenAPI 2 files are usually created primarily with documentation in mind. But what’s enough for
documentation doesn’t need to be enough for testing.

That applies to both MSON (a language powering API Blueprint’s Attributes sections) and JSON Schema (a language
powering the OpenAPI 2 format and API Blueprint’s Schema sections).

In following sections you can learn about how to deal with common scenarios.

Avoiding Additional Properties

If you describe a JSON body which has attributes name and size, the following payload will be considered as correct:

{"name": "Sparta", "size": 300, "luck": false}

It’s because in both MSON and JSON Schema additional properties are not forbidden by default.

• In API Blueprint’s Attributes sections you can mark your object with fixed-type (spec), which doesn’t allow
additional properties.

• In API Blueprint’s Schema sections and in OpenAPI 2 you can use additionalProperties: false (spec)
on the objects.

Requiring Properties

If you describe a JSON body which has attributes name and size, the following payload will be considered as correct:

{"name": "Sparta"}

It’s because properties are optional by default in both MSON and JSON Schema and you need to explicitly specify
them as required.

• In API Blueprint’s Attributes section, you can use required (spec).

2.4. How-To Guides 23

https://apiblueprint.org/documentation/mson/tutorial.html
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://json-schema.org
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://apiblueprint.org/documentation/mson/tutorial.html
https://json-schema.org
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/object.html#properties
https://apiblueprint.org/documentation/mson/tutorial.html
https://json-schema.org
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute

Dredd, Release latest

• In API Blueprint’s Schema sections and in OpenAPI 2 you can use required (spec), where you list the required
properties. (Note this is true only for the Draft v4 JSON Schema, in older versions the required functionality
was done differently.)

Validating Structure of Array Items

If you describe an array of items, where each of the items should have a name property, the following payload will be
considered as correct:

[{"name": "Sparta"}, {"title": "Athens"}, "Thebes"]

That’s because in MSON, the default behavior is that you are specifying what may appear in the array.

• In API Blueprint’s Attributes sections you can mark your array with fixed-type (spec), which doesn’t allow
array items of a different structure then specified.

• In API Blueprint’s Schema sections and in OpenAPI 2 make sure to learn about how validation of arrays exactly
works.

Validating Specific Values

If you describe a JSON body which has attributes name and size, the following payload will be considered as correct:

{"name": "Sparta", "size": 42}

If the size should be always equal to 300, you need to specify the fact in your API description.

• In API Blueprint’s Attributes sections you can mark your property with fixed (spec), which turns the sample
value into a required value. You can also use enum (spec) to provide a set of possible values.

• In API Blueprint’s Schema sections and in OpenAPI 2 you can use enum (spec) with one or more possible values.

2.4.4 Integrating Dredd with Your Test Suite

Generally, if you want to add Dredd to your existing test suite, you can just save Dredd configuration in the dredd.yml
file and add call for dredd command to your task runner.

There are also some packages which make the integration a piece of cake:

• grunt-dredd

• dredd-rack

• meteor-dredd

To find more, search for dredd in your favorite language’s package index.

24 Chapter 2. Contents

https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/object.html#required-properties
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://apiblueprint.org/documentation/mson/tutorial.html
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/array.html
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/mson/specification.html#212-structure-types
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values
https://github.com/mfgea/grunt-dredd
https://github.com/gonzalo-bulnes/dredd-rack
https://github.com/storeness/meteor-dredd

Dredd, Release latest

2.4.5 Continuous Integration

It’s a good practice to make Dredd part of your continuous integration workflow. Only that way you can ensure that
application code you’ll produce won’t break the contract you provide in your API documentation.

Dredd’s interactive configuration wizard, dredd init, can help you with setting up dredd.yml configuration file and
with modifying or generating CI configuration files for Travis CI or CircleCI.

If you prefer to add Dredd yourself or you look for inspiration on how to add Dredd to other continuous integration
services, see examples below. When testing in CI, always pin your Dredd version to a specific number and upgrade to
newer releases manually.

.circleci/config.yml Configuration File for CircleCI

version: 2
jobs:
build:
docker:
- image: circleci/node:latest

steps:
- checkout
- run: npm install dredd@x.x.x --global
- run: dredd apiary.apib http://127.0.0.1:3000

.travis.yml Configuration File for Travis CI

before_install:
- npm install dredd@x.x.x --global

before_script:
- dredd apiary.apib http://127.0.0.1:3000

2.4.6 Authenticated APIs

Dredd supports all common authentication schemes:

• Basic access authentication

• Digest access authentication

• OAuth (any version)

• CSRF tokens

• . . .

Use user setting in your configuration file or the --user option to provide HTTP basic authentication:

--user=user:password

Most of the authentication schemes use HTTP header for carrying the authentication data. If you don’t want to add
authentication HTTP header to every request in the API description, you can instruct Dredd to do it for you by the
--header option:

2.4. How-To Guides 25

https://travis-ci.org
https://circleci.com

Dredd, Release latest

--header="Authorization: Basic YmVuOnBhc3M="

2.4.7 Sending Multipart Requests

FORMAT: 1A

Testing 'multipart/form-data' Request API

POST /data

+ Request (multipart/form-data; boundary=CUSTOM-BOUNDARY)

+ Body

--CUSTOM-BOUNDARY
Content-Disposition: form-data; name="text"
Content-Type: text/plain

test equals to 42
--CUSTOM-BOUNDARY
Content-Disposition: form-data; name="json"
Content-Type: application/json

{"test": 42}

--CUSTOM-BOUNDARY--

+ Response 200 (application/json; charset=utf-8)

+ Body

{"test": "OK"}

swagger: '2.0'
info:
title: "Testing 'multipart/form-data' Request API"
version: '1.0'

consumes:
- multipart/form-data; boundary=CUSTOM-BOUNDARY

produces:
- application/json; charset=utf-8

paths:
'/data':

post:
parameters:
- name: text
in: formData
type: string
required: true
x-example: "test equals to 42"

- name: json
(continues on next page)

26 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

in: formData
type: string
required: true
x-example: '{"test": 42}'

responses:
200:
description: 'Test OK'
examples:
application/json; charset=utf-8:
test: 'OK'

2.4.8 Sending Form Data

FORMAT: 1A

Testing 'application/x-www-form-urlencoded' Request API

POST /data

+ Request (application/x-www-form-urlencoded)

+ Body

test=42

+ Response 200 (application/json; charset=utf-8)

+ Body

{"test": "OK"}

swagger: '2.0'
info:
title: "Testing 'application/x-www-form-urlencoded' Request API"
version: '1.0'

consumes:
- application/x-www-form-urlencoded

produces:
- application/json; charset=utf-8

paths:
'/data':
post:
parameters:
- name: test
in: formData
type: string
required: true
x-example: "42"

responses:
200:

(continues on next page)

2.4. How-To Guides 27

Dredd, Release latest

(continued from previous page)

description: 'Test OK'
examples:
application/json; charset=utf-8:
test: 'OK'

2.4.9 Working with Images and other Binary Bodies

The API description formats generally do not provide a way to describe binary content. The easiest solution is to
describe only the media type, to leave out the body, and to handle the rest using Hooks.

Binary Request Body

API Blueprint

FORMAT: 1A

Images API

Resource [/image.png]

Send an Image [PUT]

+ Request (image/png)

+ Response 200 (application/json; charset=utf-8)
+ Body

{"test": "OK"}

OpenAPI 2

swagger: "2.0"
info:
version: "1.0"
title: Images API

schemes:
- http

consumes:
- image/png

produces:
- application/json

paths:
/image.png:
put:
parameters:
- name: binary
in: body

(continues on next page)

28 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

required: true
schema:
type: string
format: binary

responses:
200:
description: 'Test OK'
examples:
application/json; charset=utf-8:
test: 'OK'

Hooks

In hooks, you can populate the request body with real binary data. The data must be in a form of a Base64-encoded
string.

const hooks = require('hooks');
const fs = require('fs');
const path = require('path');

hooks.beforeEach((transaction, done) => {
const buffer = fs.readFileSync(path.join(__dirname, '../image.png'));
transaction.request.body = buffer.toString('base64');
transaction.request.bodyEncoding = 'base64';
done();

});

Binary Response Body

API Blueprint

FORMAT: 1A

Images API

Resource [/image.png]

Retrieve Representation [GET]

+ Response 200 (image/png)

2.4. How-To Guides 29

https://en.wikipedia.org/wiki/Base64

Dredd, Release latest

OpenAPI 2

swagger: "2.0"
info:
version: "1.0"
title: Images API

schemes:
- http

produces:
- image/png

paths:
/image.png:
get:
responses:
200:
description: Representation
schema:
type: string
format: binary

examples:
"image/png": ""

Note: Do not use the explicit binary or bytes formats with response bodies, as Dredd is not able to properly work
with those (api-elements.js#269).

Hooks

In hooks, you can either assert the body:

const hooks = require('hooks');
const fs = require('fs');
const path = require('path');

hooks.beforeEachValidation((transaction, done) => {
const bytes = fs.readFileSync(path.join(__dirname, '../image.png'));
transaction.expected.body = bytes.toString('base64');
done();

});

Or you can ignore it:

const hooks = require('hooks');

hooks.beforeEachValidation((transaction, done) => {
transaction.real.body = '';
done();

});

30 Chapter 2. Contents

https://github.com/apiaryio/api-elements.js/issues/269

Dredd, Release latest

2.4.10 Multiple Requests and Responses

Note: For details on this topic see also How Dredd Works With HTTP Transactions.

API Blueprint

To test multiple requests and responses within one action in Dredd, you need to cluster them into pairs:

FORMAT: 1A

My API

Resource [/resource/{id}]

+ Parameters
+ id: 42 (required)

Update Resource [PATCH]

+ Request (application/json)

{"color": "yellow"}

+ Response 200 (application/json)

{"color": "yellow", "id": 1}

+ Request Edge Case (application/json)

{"weight": 1}

+ Response 400 (application/vnd.error+json)

{"message": "Validation failed"}

Dredd will detect two HTTP transaction examples and will compile following transaction names:

$ dredd api-description.apib http://127.0.0.1 --names
info: Resource > Update Resource > Example 1
info: Resource > Update Resource > Example 2

In case you need to perform particular request with different URI parameters and standard inheritance of URI parameters
isn’t working for you, try modifying transaction before its execution in hooks.

2.4. How-To Guides 31

Dredd, Release latest

OpenAPI 2

When using OpenAPI 2 format, by default Dredd tests only responses with 2xx status codes. Responses with other
codes are marked as skipped and can be activated in hooks:

var hooks = require('hooks');

hooks.before('/resource > GET > 500 > application/json', function (transaction, done) {
transaction.skip = false;
done();

});

2.4.11 Using Apiary Reporter and Apiary Tests

Command-line output of complex HTTP responses and expectations can be hard to read. To tackle the problem, you
can use Dredd to send test reports to Apiary. Apiary provides a comfortable interface for browsing complex test reports:

$ dredd apiary.apib http://127.0.0.1 --reporter=apiary
warn: Apiary API Key or API Project Name were not provided. Configure Dredd to be able␣
→˓to save test reports alongside your Apiary API project: https://dredd.org/en/latest/
→˓how-to-guides/#using-apiary-reporter-and-apiary-tests
pass: DELETE /honey duration: 884ms
complete: 1 passing, 0 failing, 0 errors, 0 skipped, 1 total
complete: Tests took 1631ms
complete: See results in Apiary at: https://app.apiary.io/public/tests/run/74d20a82-55c5-
→˓49bb-aac9-a3a5a7450f06

Saving Test Reports under Your Account in Apiary

As you can see on the screenshot, the test reports are anonymous by default and will expire after some time. However,
if you provide Apiary credentials, your test reports will appear on the Tests page of your API Project. This is great
especially for introspection of test reports from Continuous Integration.

To get and setup credentials, just follow the tutorial in Apiary:

As you can see, the parameters go like this:

$ dredd -j apiaryApiKey:<Apiary API Key> -j apiaryApiName:<API Project Name>

In addition to using parameters and dredd.yml, you can also use environment variables:

• APIARY_API_KEY=<Apiary API Key> - Alternative way to pass credentials to Apiary Reporter.

• APIARY_API_NAME=<API Project Name> - Alternative way to pass credentials to Apiary Reporter.

When sending test reports to Apiary, Dredd inspects the environment where it was executed and sends some information
about it alongside test results. Those are used mainly for detection whether the environment is Continuous Integration
and also, they help you to identify individual test reports on the Tests page. You can use the following variables to tell
Dredd what to send:

• agent (string) - DREDD_AGENT or current user in the OS

• hostname (string) - DREDD_HOSTNAME or hostname of the OS

• CI (boolean) - looks for TRAVIS, CIRCLE, CI, DRONE, BUILD_ID, . . .

32 Chapter 2. Contents

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://apiary.io

Dredd, Release latest

Fig. 1: Apiary Tests

2.4. How-To Guides 33

Dredd, Release latest

Fig. 2: Apiary Tests Tutorial

2.4.12 Example Values for Request Parameters

While example values are natural part of the API Blueprint format, the OpenAPI 2 specification allows them only for
body request parameters (schema.example).

However, Dredd needs to know what values to use when testing described API, so it supports x-example vendor
extension property to overcome the OpenAPI 2 limitation:

...
paths:
/cars:
get:
parameters:
- name: limit
in: query
type: number
x-example: 42

The x-example property is respected for all kinds of request parameters except of body parameters, where native
schema.example should be used.

34 Chapter 2. Contents

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-vendorextensions
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-vendorextensions

Dredd, Release latest

2.4.13 Removing Sensitive Data from Test Reports

Sometimes your API sends back sensitive information you don’t want to get disclosed in Apiary Tests or in your CI log.
In that case you can use Hooks to do sanitation. Before diving into examples below, do not forget to consider following:

• Be sure to read section about security first.

• Only the transaction.test (docs) object will make it to reporters. You don’t have to care about sanitation of
the rest of the transaction (docs) object.

• The transaction.test.message and all the transaction.test.results.body.results.rawData.*.
message properties contain validation error messages. While they’re very useful for learning about what’s wrong
on command line, they can contain direct mentions of header names, header values, body properties, body struc-
ture, body values, etc., thus it’s recommended their contents are completely removed to prevent unintended leaks
of sensitive information.

• Without the transaction.test.results.body.results.rawData property Apiary reporter won’t be able
to render green/red difference between payloads.

• You can use Ultimate ‘afterEach’ Guard to make sure you won’t leak any sensitive data by mistake.

• If your hooks crash, Dredd will send an error to reporters, alongside with current contents of the transaction.
test (docs) object. See the Sanitation of Test Data of Transaction With Secured Erroring Hooks example to
learn how to prevent this.

Sanitation of the Entire Request Body

• API Blueprint

• Hooks

Sanitation of the Entire Response Body

• API Blueprint

• Hooks

Sanitation of a Request Body Attribute

• API Blueprint

• Hooks

Sanitation of a Response Body Attribute

• API Blueprint

• Hooks

2.4. How-To Guides 35

https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/entire-request-body.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/entire-request-body.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/entire-response-body.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/entire-response-body.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/request-body-attribute.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/request-body-attribute.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/response-body-attribute.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/response-body-attribute.js

Dredd, Release latest

Sanitation of Plain Text Response Body by Pattern Matching

• API Blueprint

• Hooks

Sanitation of Request Headers

• API Blueprint

• Hooks

Sanitation of Response Headers

• API Blueprint

• Hooks

Sanitation of URI Parameters by Pattern Matching

• API Blueprint

• Hooks

Sanitation of Any Content by Pattern Matching

• API Blueprint

• Hooks

Sanitation of Test Data of Passing Transaction

• API Blueprint

• Hooks

Sanitation of Test Data When Transaction Is Marked as Failed in ‘before’ Hook

• API Blueprint

• Hooks

Sanitation of Test Data When Transaction Is Marked as Failed in ‘after’ Hook

• API Blueprint

• Hooks

36 Chapter 2. Contents

https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/plain-text-response-body.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/plain-text-response-body.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/request-headers.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/request-headers.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/response-headers.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/response-headers.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/uri-parameters.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/uri-parameters.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/any-content-pattern-matching.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/any-content-pattern-matching.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-passing.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-passing.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-marked-failed-before.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-marked-failed-before.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-marked-failed-after.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-marked-failed-after.js

Dredd, Release latest

Sanitation of Test Data When Transaction Is Marked as Skipped

• API Blueprint

• Hooks

Ultimate ‘afterEach’ Guard Using Pattern Matching

You can use this guard to make sure you won’t leak any sensitive data by mistake.

• API Blueprint

• Hooks

Sanitation of Test Data of Transaction With Secured Erroring Hooks

If your hooks crash, Dredd will send an error to reporters, alongside with current contents of the transaction.test
(docs) object. If you want to prevent this, you need to add try/catch to your hooks, sanitize the test object, and
gracefully fail the transaction.

• API Blueprint

• Hooks

2.5 Command-line Interface

2.5.1 Usage

$ dredd '<api-description-document>' '<api-location>' [OPTIONS]

Example:

$ dredd ./apiary.md http://127.0.0.1:3000

2.5.2 Arguments

api-description-document
URL or path to the API description document (API Blueprint, OpenAPI 2). Sample values: ./
api-blueprint.apib, ./openapi2.yml, ./openapi2.json, http://example.com/api-blueprint.
apib

api-location
URL, the root address of your API. Sample values: http://127.0.0.1:3000, http://api.example.com

2.5. Command-line Interface 37

https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-marked-skipped.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-marked-skipped.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/any-content-guard-pattern-matching.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/any-content-guard-pattern-matching.js
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-secured-erroring-hooks.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/test/fixtures/sanitation/transaction-secured-erroring-hooks.js

Dredd, Release latest

2.5.3 Configuration File

If you use Dredd repeatedly within a single project, the preferred way to run it is to first persist your configuration in a
dredd.yml file. With the file in place you can then run Dredd every time simply just by:

$ dredd

Dredd offers interactive wizard to setup your dredd.yml file:

$ dredd init

See below how sample configuration file could look like. The structure is the same as of the Dredd Class configuration
object.

reporter: apiary
custom:
- "apiaryApiKey:yourSecretApiaryAPiKey"
- "apiaryApiName:apiName"

dry-run: null
hookfiles: "dreddhooks.js"
server: rails server
server-wait: 3
init: false
names: false
only: []
output: []
header: []
sorted: false
user: null
inline-errors: false
details: false
method: []
loglevel: warning
path: []
blueprint: api-description.apib
endpoint: "http://127.0.0.1:3000"

Note: Do not get confused by Dredd using a keyword blueprint also for paths to OpenAPI 2 documents. This is for
historical reasons and will be changed in the future.

2.5.4 CLI Options Reference

Remember you can always list all available arguments by dredd --help.

--color
Use –color/–no-color to enable/disable colored output Default value: true

--config
Path to dredd.yml config file. Default value: "./dredd.yml"

--custom, -j
Pass custom key-value configuration data delimited by a colon. E.g. -j ‘a:b’ Default value: []

38 Chapter 2. Contents

Dredd, Release latest

--details, -d
Determines whether request/response details are included in passing tests. Default value: false

--dry-run, -y
Do not run any real HTTP transaction, only parse API description document and compile transactions. Default
value: null

--header, -h
Extra header to include in every request. This option can be used multiple times to add multiple headers. Default
value: []

--help
Show usage information.

--hookfiles, -f
Path to hook files. Can be used multiple times, supports glob patterns. Hook files are executed in alphabetical
order. Default value: null

--hooks-worker-after-connect-wait
How long to wait between connecting to hooks handler and start of testing. [ms] Default value: 100

--hooks-worker-connect-retry
How long to wait between attempts to connect to hooks handler. [ms] Default value: 500

--hooks-worker-connect-timeout
Total hooks handler connection timeout (includes all retries). [ms] Default value: 1500

--hooks-worker-handler-host
Host of the hooks handler. Default value: "127.0.0.1"

--hooks-worker-handler-port
Port of the hooks handler. Default value: 61321

--hooks-worker-term-retry
How long to wait between attempts to terminate hooks handler. [ms] Default value: 500

--hooks-worker-term-timeout
How long to wait between trying to terminate hooks handler and killing it. [ms] Default value: 5000

--hooks-worker-timeout
How long to wait for hooks handler to start. [ms] Default value: 5000

--init, -i
Run interactive configuration. Creates dredd.yml configuration file. Default value: false

--inline-errors, -e
Determines whether failures and errors are displayed as they occur (true) or aggregated and displayed at the end
(false). Default value: false

--language, -a
Language of hookfiles. Possible options are: nodejs, ruby, python, php, perl, go, rust Default value: "nodejs"

--loglevel, -l
Application logging level. Supported levels: ‘debug’, ‘warning’, ‘error’, ‘silent’. The value ‘debug’ also displays
timestamps. Default value: "warning"

--method, -m
Restrict tests to a particular HTTP method (GET, PUT, POST, DELETE, PATCH). This option can be used
multiple times to allow multiple methods. Default value: []

--names, -n
Only list names of requests (for use in a hookfile). No requests are made. Default value: false

2.5. Command-line Interface 39

Dredd, Release latest

--only, -x
Run only specified transaction name. Can be used multiple times Default value: []

--output, -o
Specifies output file when using additional file-based reporter. This option can be used multiple times if multiple
file-based reporters are used. Default value: []

--path, -p
Additional API description paths or URLs. Can be used multiple times with glob pattern for paths. Default
value: []

--reporter, -r
Output additional report format. This option can be used multiple times to add multiple reporters. Options:
xunit, nyan, dot, markdown, html, apiary. Default value: []

--require
When using nodejs hooks, require the given module before executing hooks Default value: null

--server, -g
Run API backend server command and kill it after Dredd execution. E.g. rails server Default value: null

--server-wait
Set delay time in seconds between running a server and test run. Default value: 3

--sorted, -s
Sorts requests in a sensible way so that objects are not modified before they are created. Order: CONNECT,
OPTIONS, POST, GET, HEAD, PUT, PATCH, LINK, UNLINK, DELETE, TRACE. Default value: false

--user, -u
Basic Auth credentials in the form username:password. Default value: null

--version
Show version number.

2.6 Using Dredd as a JavaScript Library

Dredd can be used directly from your JavaScript code. First, import and configure Dredd:

var Dredd = require('dredd');
var dredd = new Dredd(configuration);

Then you need to run the Dredd testing:

dredd.run(function (err, stats) {
// err is present if anything went wrong
// otherwise stats is an object with useful statistics

});

As you can see, dredd.run is a function receiving another function as a callback. Received arguments are err (error
if any) and stats (testing statistics) with numbers accumulated throughout the Dredd run.

40 Chapter 2. Contents

Dredd, Release latest

2.6.1 Configuration Object for Dredd Class

Let’s have a look at an example configuration first. (Please also see the CLI options to read detailed information about
the list of available options).

{
endpoint: 'http://127.0.0.1:3000/api', // your URL to API endpoint the tests will run␣

→˓against
path: [], // Required Array if Strings; filepaths to API description documents,

→˓ can use glob wildcards
'dry-run': false, // Boolean, do not run any real HTTP transaction
names: false, // Boolean, Print Transaction names and finish, similar to dry-run
loglevel: 'warning', // String, logging level (debug, warning, error, silent)
only: [], // Array of Strings, run only transaction that match these names
header: [], // Array of Strings, these strings are then added as headers␣

→˓(key:value) to every transaction
user: null, // String, Basic Auth credentials in the form username:password
hookfiles: [], // Array of Strings, filepaths to files containing hooks (can use␣

→˓glob wildcards)
reporter: ['dot', 'html'], // Array of possible reporters, see folder lib/reporters
output: [], // Array of Strings, filepaths to files used for output of file-

→˓based reporters
'inline-errors': false, // Boolean, If failures/errors are display immediately in␣

→˓Dredd run
require: null, // String, When using nodejs hooks, require the given module before␣

→˓executing hooks
color: true,
emitter: new EventEmitter(), // listen to test progress, your own instance of␣

→˓EventEmitter
apiDescriptions: ['FORMAT: 1A\n# Sample API\n']

}

Warning: The usage of nested options key is deprecated. Please list options under the root of the configuration.

Warning: The top-level server property must be replaced by endpoint. Do not confuse with the options –server
option, that provides a server running command (i.e. npm start).

configuration

configuration.endpoint
The HTTP(S) address of the API server to test against the API description(s). A valid URL is expected, e.g.
http://127.0.0.1:8000

Type string

Required yes

configuration.path
Array of paths or URLs to API description documents.

Type array

Required yes

2.6. Using Dredd as a JavaScript Library 41

Dredd, Release latest

configuration.emitter
Listen to test progress by providing your own instance of EventEmitter.

Type EventEmitter

configuration.apiDescriptions
API descriptions as strings. Useful when you don’t want to operate on top of the filesystem.

Type array

2.7 Hooks

Dredd supports hooks, which are blocks of arbitrary code that run before or after each test step. The concept is similar
to XUnit’s setUp and tearDown functions, Cucumber hooks, or Git hooks. Hooks are usually used for:

• Loading database fixtures,

• cleaning up after test step(s),

• handling auth and sessions,

• passing data between transactions (saving state from responses),

• modifying a request generated from the API description,

• changing generated expectations,

• setting custom expectations,

• debugging by logging stuff.

2.7.1 Getting started

Let’s have a description of a blog API, which allows to list all articles, and to publish a new one.

API Blueprint

FORMAT: 1A

Blog API
Articles [/articles]
List articles [GET]

+ Response 200 (application/json; charset=utf-8)

[
{
"id": 1,
"title": "Creamy cucumber salad",
"text": "Slice cucumbers..."

}
]

Publish an article [POST]

+ Request (application/json; charset=utf-8)

(continues on next page)

42 Chapter 2. Contents

https://nodejs.org/api/events.html#events_class_eventemitter
https://cucumber.io/docs/cucumber/api/#hooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

Dredd, Release latest

(continued from previous page)

{
"title": "Crispy schnitzel",
"text": "Prepare eggs..."

}

+ Response 201 (application/json; charset=utf-8)

{
"id": 2,
"title": "Crispy schnitzel",
"text": "Prepare eggs..."

}

OpenAPI 2

swagger: "2.0"
info:
title: "Blog API"
version: "1.0"

consumes:
- "application/json; charset=utf-8"

produces:
- "application/json; charset=utf-8"

paths:
"/articles":
x-summary: "Articles"
get:
summary: "List articles"
description: "Retrieve a list of all articles"
responses:
200:
description: "Articles list"
examples:
"application/json; charset=utf-8":
- id: 1
title: "Creamy cucumber salad"
text: "Slice cucumbers..."

post:
summary: "Publish an article"
description: "Create and publish a new article"
parameters:
- name: "body"
in: "body"
schema:
example:
title: "Crispy schnitzel"
text: "Prepare eggs..."

responses:
201:
description: "New article"
examples:
"application/json; charset=utf-8":

(continues on next page)

2.7. Hooks 43

Dredd, Release latest

(continued from previous page)

id: 2
title: "Crispy schnitzel"
text: "Prepare eggs..."

Now let’s say the real instance of the API has the POST request protected so it is not possible for everyone to publish
new articles. We do not want to hardcode secret tokens in our API description, but we want to get Dredd to pass the
auth. This is where the hooks can help.

Writing hooks

Hooks are functions, which are registered to be ran for a specific test step (HTTP transaction) and at a specific point in
Dredd’s execution life cycle. Hook functions take one or more transaction objects, which they can modify. Let’s use
hooks to add an Authorization header to Dredd’s request.

Dredd supports writing hooks in multiple programming languages, but we’ll go with JavaScript hooks in this tutorial
as they’re available out of the box.

API Blueprint

Let’s create a file called hooks.js with the following content:

const hooks = require('hooks');

hooks.before('Articles > Publish an article', (transaction) => {
transaction.request.headers.Authorization = 'Basic: YWxhZGRpbjpvcGVuc2VzYW1l';

});

As you can see, we’re registering the hook function to be executed before the HTTP transaction Articles > Publish
an article. This path-like identifier is a transaction name.

OpenAPI 2

Let’s create a file called hooks.js with the following content:

const hooks = require('hooks');

hooks.before('Articles > Publish an article > 201 > application/json; charset=utf-8',␣
→˓(transaction) => {
transaction.request.headers.Authorization = 'Basic: YWxhZGRpbjpvcGVuc2VzYW1l';

});

As you can see, we’re registering the hook function to be executed before the HTTP transaction Articles > Publish
an article > 201 > application/json. This path-like identifier is a transaction name.

Running Dredd with hooks

With the API instance running locally at http://127.0.0.1:3000, you can now run Dredd with hooks using the
--hookfiles option:

API Blueprint

dredd ./blog.apib http://127.0.0.1:3000 --hookfiles=./hooks.js

OpenAPI 2

44 Chapter 2. Contents

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Dredd, Release latest

dredd ./blog.yaml http://127.0.0.1:3000 --hookfiles=./hooks.js

Now the tests should pass even if publishing new article requires auth.

2.7.2 Supported languages

Dredd itself is written in JavaScript, so it supports JavaScript hooks out of the box. Running hooks in other languages
requires installing a dedicated hooks handler. Supported languages are:

Writing Dredd Hooks In Node.js

Usage

$ dredd apiary.apib http://127.0.0.1:30000 --hookfiles=./hooks*.js

API Reference

• For before, after, beforeValidation, beforeEach, afterEach and beforeEachValidation a Transac-
tion Object is passed as the first argument to the hook function.

• An array of Transaction Objects is passed to beforeAll and afterAll.

• The second argument is an optional callback function for async execution.

• Any modifications on the transaction object are propagated to the actual HTTP transactions.

• You can use hooks.log function inside the hook function to print yours debug messages and other information.

• configuration (docs) object is populated on the hooks object

Sync API

var hooks = require('hooks');

hooks.beforeAll(function (transactions) {
hooks.log('before all');

});

hooks.beforeEach(function (transaction) {
hooks.log('before each');

});

hooks.before("Machines > Machines collection > Get Machines", function (transaction) {
hooks.log("before");

});

hooks.beforeEachValidation(function (transaction) {
hooks.log('before each validation');

});

(continues on next page)

2.7. Hooks 45

Dredd, Release latest

(continued from previous page)

hooks.beforeValidation("Machines > Machines collection > Get Machines", function␣
→˓(transaction) {
hooks.log("before validation");

});

hooks.after("Machines > Machines collection > Get Machines", function (transaction) {
hooks.log("after");

});

hooks.afterEach(function (transaction) {
hooks.log('after each');

});

hooks.afterAll(function (transactions) {
hooks.log('after all');

})

Async API

When the callback is used in the hook function, callbacks can handle asynchronous function calls.

var hooks = require('hooks');

hooks.beforeAll(function (transactions, done) {
hooks.log('before all');
done();

});

hooks.beforeEach(function (transaction, done) {
hooks.log('before each');
done();

});

hooks.before("Machines > Machines collection > Get Machines", function (transaction,␣
→˓done) {
hooks.log("before");
done();

});

hooks.beforeEachValidation(function (transaction, done) {
hooks.log('before each validation');
done();

});

hooks.beforeValidation("Machines > Machines collection > Get Machines", function␣
→˓(transaction, done) {
hooks.log("before validation");
done();

});

hooks.after("Machines > Machines collection > Get Machines", function (transaction,␣
→˓done) { (continues on next page)

46 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

hooks.log("after");
done();

});

hooks.afterEach(function (transaction, done) {
hooks.log('after each');
done();

});

hooks.afterAll(function (transactions, done) {
hooks.log('after all');
done();

})

Examples

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

var before = require('hooks').before;

before("Machines > Machines collection > Get Machines", function (transaction) {
transaction.skip = true;

});

Sharing Data Between Steps in Request Stash

You may pass data between test steps using the response stash.

var hooks = require('hooks');
var before = hooks.before;
var after = hooks.after;

var responseStash = {};

after("Machines > Machines collection > Create Machine", function (transaction) {

// saving HTTP response to the stash
responseStash[transaction.name] = transaction.real;

});

before("Machines > Machine > Delete a machine", function (transaction) {
//reusing data from previous response here
var machineId = JSON.parse(responseStash['Machines > Machines collection > Create␣

→˓Machine'])['id'];

//replacing id in URL with stashed id from previous response
(continues on next page)

2.7. Hooks 47

Dredd, Release latest

(continued from previous page)

var url = transaction.fullPath;
transaction.fullPath = url.replace('42', machineId);

});

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive message.

var before = require('hooks').before;

before("Machines > Machines collection > Get Machines", function (transaction) {
transaction.fail = "Some failing message";

});

Using Chai Assertions

Inside hook files, you can require Chai and use its assert, should or expect interface in hooks and write your custom
expectations. Dredd catches Chai’s expectation error in hooks and makes transaction to fail.

var hooks = require('hooks');
var before = hooks.before;
var assert = require('chai').assert;

after("Machines > Machines collection > Get Machines", function (transaction) {
assert.isBelow(transaction.real.body.length, 100);

});

Modifying Transaction Request Body Prior to Execution

var hooks = require('hooks');
var before = hooks.before;

before("Machines > Machines collection > Get Machines", function (transaction) {
// parse request body from API description
var requestBody = JSON.parse(transaction.request.body);

// modify request body here
requestBody['someKey'] = 'someNewValue';

// stringify the new body to request
transaction.request.body = JSON.stringify(requestBody);

});

48 Chapter 2. Contents

https://www.chaijs.com/

Dredd, Release latest

Modifying Multipart Transaction Request Body Prior to Execution

Dependencies:

• multi-part

• stream-to-string

const hooks = require('hooks');
const fs = require('fs');
const Multipart = require('multi-part');
const streamToString = require('stream-to-string');

var before = hooks.before;

before("Machines > Machines collection > Create Machines", async function (transaction,␣
→˓done) {

const form = new Multipart();
form.append('title', 'Foo');
form.append('photo', fs.createReadStream('./bar.jpg'));
transaction.request.body = await streamToString(form.getStream());
transaction.request.headers['Content-Type'] = form.getHeaders()['content-type'];
done();

});

Adding or Changing URI Query Parameters to All Requests

var hooks = require('hooks');

hooks.beforeEach(function (transaction) {
// add query parameter to each transaction here
var paramToAdd = "api-key=23456"
if(transaction.fullPath.indexOf('?') > -1){
transaction.fullPath += "&" + paramToAdd;

} else{
transaction.fullPath += "?" + paramToAdd;

}
});

Handling sessions

var hooks = require('hooks');
var stash = {};

// hook to retrieve session on a login
hooks.after('Auth > /remoteauth/userpass > POST', function (transaction) {
stash['token'] = JSON.parse(transaction.real.body)['sessionId'];

});

// hook to set the session cookie in all following requests
(continues on next page)

2.7. Hooks 49

https://www.npmjs.com/package/multi-part
https://www.npmjs.com/package/stream-to-string

Dredd, Release latest

(continued from previous page)

hooks.beforeEach(function (transaction) {
if(stash['token'] != undefined){
transaction.request['headers']['Cookie'] = "id=" + stash['token'];

};
});

Remove trailing newline character in expected plain text bodies

var hooks = require('hooks');

hooks.beforeEach(function(transaction) {
if (transaction.expected.headers['Content-Type'] === 'text/plain') {
transaction.expected.body = transaction.expected.body.replace(/^\s+|\s+$/g, "");

}
});

Using Babel

You can use Babel for support of all the latest JS syntactic coolness in Dredd by using babel-register:

npm install -g babel-register @babel/preset-env
echo '{ "presets": [["env", { "target": { "node":6 } }]] }' > .babelrc
dredd test/fixtures/single-get.apib http://127.0.0.1:3000 --hookfiles=./es2015.js --
→˓require=@babel/register

Using CoffeScript

You can use CoffeeScript in hooks by registering it as a compiler.

dredd test/fixtures/single-get.apib http://127.0.0.1:3000 --hookfiles=./hooks.coffee --
→˓require=coffeescript/register

Writing Dredd Hooks In Go

GitHub repository

Go hooks are using Dredd’s hooks handler socket interface. For using Go hooks in Dredd you have to have Dredd
already installed. The Go library is called goodman.

50 Chapter 2. Contents

https://babeljs.io/
https://www.npmjs.com/package/@babel/register
https://coffeescript.org
https://godoc.org/github.com/snikch/goodman
https://github.com/snikch/goodman

Dredd, Release latest

Installation

$ go get github.com/snikch/goodman/cmd/goodman

Usage

Using Dredd with Go is slightly different to other languages, as a binary needs to be compiled for execution. The
--hookfiles options should point to compiled hook binaries. See below for an example hooks.go file to get an idea
of what the source file behind the go binary would look like.

$ dredd apiary.apib http://127.0.0.1:3000 --server=./go-lang-web-server-to-test --
→˓language=go --hookfiles=./hook-file-binary

Note: If you’re running Dredd inside Docker, read about specifics of getting it working together with non-JavaScript
hooks.

API Reference

In order to get a general idea of how the Go Hooks work, the main executable from the package $GOPATH/bin/goodman
is an HTTP Server that Dredd communicates with and an RPC client. Each hookfile then acts as a corresponding RPC
server. So when Dredd notifies the Hooks server what transaction event is occuring the hooks server will execute all
registered hooks on each of the hookfiles RPC servers.

You’ll need to know a few things about the Server type in the hooks package.

1. The hooks.Server type is how you can define event callbacks such as beforeEach, afterAll, etc.

2. To get a hooks.Server struct you must do the following

package main

import (
"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))

// Define all your event callbacks here

// server.Serve() will block and allow the goodman server to run your defined
// event callbacks
server.Serve()
// You must close the listener at end of main()
defer server.Listener.Close()

}

2. Callbacks receive a Transaction instance, or an array of them

2.7. Hooks 51

Dredd, Release latest

3. A Server will run your Runner and handle receiving events on the dredd socket.

Runner Callback Events

The Runner type has the following callback methods.

1. BeforeEach, BeforeEachValidation, AfterEach

• accepts a function as a first argument passing a Transaction object as a first argument

2. Before, BeforeValidation, After

• accepts transaction name as a first argument

• accepts a function as a second argument passing a Transaction object as a first argument of it

3. BeforeAll, AfterAll

• accepts a function as a first argument passing a Slice of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when each hook callback is executed.

Using the Go API

Example usage of all methods.

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.BeforeAll(func(t []*trans.Transaction) {

fmt.Println("before all modification")
})
h.BeforeEach(func(t *trans.Transaction) {

fmt.Println("before each modification")
})
h.Before("/message > GET", func(t *trans.Transaction) {

fmt.Println("before modification")
})
h.BeforeEachValidation(func(t *trans.Transaction) {

fmt.Println("before each validation modification")
})
h.BeforeValidation("/message > GET", func(t *trans.Transaction) {

fmt.Println("before validation modification")
})
h.After("/message > GET", func(t *trans.Transaction) {

fmt.Println("after modification")
(continues on next page)

52 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

})
h.AfterEach(func(t *trans.Transaction) {

fmt.Println("after each modification")
})
h.AfterAll(func(t []*trans.Transaction) {

fmt.Println("after all modification")
})
server.Serve()
defer server.Listener.Close()

}

Examples

How to Skip Tests

Any test step can be skipped by setting the Skip property of the Transaction instance to true.

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.Before("Machines > Machines collection > Get Machines", func(t *trans.Transaction)

→˓{
t.Skip = true

})
server.Serve()
defer server.Listener.Close()

}

Failing Tests Programmatically

You can fail any step by setting the Fail field of the Transaction instance to true or any string with a descriptive
message.

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

(continues on next page)

2.7. Hooks 53

Dredd, Release latest

(continued from previous page)

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.Before("Machines > Machines collection > Get Machines", func(t *trans.Transaction)

→˓{
t.Fail = true

})
h.Before("Machines > Machines collection > Post Machines", func(t *trans.

→˓Transaction) {
t.Fail = "POST is broken"

})
server.Serve()
defer server.Listener.Close()

}

Modifying the Request Body Prior to Execution

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.Before("Machines > Machines collection > Get Machines", func(t *trans.Transaction)

→˓{
body := map[string]interface{}{}
json.Unmarshal([]byte(t.Request.Body), &body)

body["someKey"] = "new value"

newBody, _ := json.Marshal(body)
t.Request.Body = string(newBody)

})
server.Serve()
defer server.Listener.Close()

}

54 Chapter 2. Contents

Dredd, Release latest

Writing Dredd Hooks In Perl

GitHub repository

Perl hooks are using Dredd’s hooks handler socket interface. For using Perl hooks in Dredd you have to have Dredd
already installed

Installation

$ cpanm Dredd::Hooks

Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=dredd-hooks-perl --hookfiles=./
→˓hooks*.pl

Note: If you’re running Dredd inside Docker, read about specifics of getting it working together with non-JavaScript
hooks.

API Reference

Module Dredd::Hooks::Methods imports following decorators:

1. beforeEach, beforeEachValidation, afterEach

• wraps a function and passes Transaction object as a first argument to it

2. before, beforeValidation, after

• accepts transaction name as a first argument

• wraps a function and sends a Transaction object as a first argument to it

3. beforeAll, afterAll

• wraps a function and passes an Array of Transaction objects as a first argument to it

Refer to Dredd execution life-cycle to find when is each hook function executed.

Using Perl API

Example usage of all methods in

use Dredd::Hooks::Methods;

beforeAll(sub {
print 'before all'

});

(continues on next page)

2.7. Hooks 55

https://api.travis-ci.org/ungrim97/Dredd-Hooks.svg?branch=master
https://github.com/ungrim97/Dredd-Hooks

Dredd, Release latest

(continued from previous page)

beforeEach(sub {
print 'before each'

})

before("Machines > Machines collection > Get Machines" => sub {
print 'before'

});

beforeEachValidation(sub {
print 'before each validation'

});

beforeValidation("Machines > Machines collection > Get Machines" => sub {
print 'before validations'

});

after("Machines > Machines collection > Get Machines" => sub {
print 'after'

});

afterEach(sub {
print 'after_each'

});

afterAll(sub {
print 'after_all'

});

Examples

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

use Dredd::Hooks::Methods;
use Types::Serialiser;

before("Machines > Machines collection > Get Machines" => sub {
my ($transaction) = @_;

$transaction->{skip} = Types::Serialiser::true;
});

56 Chapter 2. Contents

Dredd, Release latest

Sharing Data Between Steps in Request Stash

If you want to test some API workflow, you may pass data between test steps using the response stash.

use JSON;
use Dredd::Hooks::Methods;

my $response_stash = {};

after("Machines > Machines collection > Create Machine" => sub {
my ($transaction) = @_;

saving HTTP response to the stash
$response_stash->{$transaction->{name}} = $transaction->{real}

});

before("Machines > Machine > Delete a machine" => sub {
my ($transaction) = @_;
#reusing data from previous response here
my $parsed_body = JSON->decode_json(

$response_stash->{'Machines > Machines collection > Create Machine'}
);
my $machine_id = $parsed_body->{id};
#replacing id in URL with stashed id from previous response
$transaction->{fullPath} =~ s/42/$machine_id/;

});

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive message.

use Dredd::Hooks::Methods;

before("Machines > Machines collection > Get Machines" => sub {
my ($transaction) = @_;
$transaction->{fail} = "Some failing message";

});

Modifying Transaction Request Body Prior to Execution

use JSON;
use Dredd::Hooks::Methods;

before("Machines > Machines collection > Get Machines" => sub {
my ($transaction) = @_;

parse request body from API description
my $request_body = JSON->decode_json($transaction->{request}{body});

modify request body here
(continues on next page)

2.7. Hooks 57

Dredd, Release latest

(continued from previous page)

$request_body->{someKey} = 'some new value';

stringify the new body to request
$transaction->{request}{body} = JSON->encode_json($request_body);

});

Adding or Changing URI Query Parameters to All Requests

use Dredd::Hooks::Methods;

beforeEach(sub {
my ($transaction) = @_;
add query parameter to each transaction here
my $param_to_add = "api-key=23456";

if ($transaction->{fullPath} =~ m/?/){
$transaction->{fullPath} .= "&$param_to_add";

} else {
$transaction->{fullPath} .= "?$param_to_add";

}
});

Handling sessions

use JSON;
use Dredd::Hooks::Methods;

my $stash = {}

hook to retrieve session on a login
after('Auth > /remoteauth/userpass > POST' => sub {

my ($transaction) = @_;

my $parsed_body = JSON->decode_json($transaction->{real}{body});
my $stash->{token} = $parsed_body->{sessionId};

)};

hook to set the session cookie in all following requests
beforeEach(sub {

my ($transaction) = @_;

if (exists $stash->{token}){
$transaction->{request}{headers}{Cookie} = "id=".$stash{token};

}
});

58 Chapter 2. Contents

Dredd, Release latest

Remove trailing newline character in expected plain text bodies

use Dredd::Hooks::Methods;

beforeEach(
my ($transaction) = @_;

if($transaction->{expected}{headers}{Content-Type} eq 'text/plain'){
$transaction->{expected}{body} = chomp($transaction->{expected}{body});

}
});

Writing Dredd Hooks In PHP

GitHub repository

PHP hooks are using Dredd’s hooks handler socket interface. For using PHP hooks in Dredd you have to have Dredd
already installed

Installation

Requirements

• php version >= 5.4

Installing dredd-hooks-php can be easily installed through the package manager, composer.

$ composer require ddelnano/dredd-hooks-php --dev

Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=vendor/bin/dredd-hooks-php --
→˓hookfiles=./hooks*.php

Note: If you’re running Dredd inside Docker, read about specifics of getting it working together with non-JavaScript
hooks.

2.7. Hooks 59

https://travis-ci.org/ddelnano/dredd-hooks-php
https://github.com/ddelnano/dredd-hooks-php

Dredd, Release latest

API Reference

The Dredd\Hooks class provides the static methods listed below to create hooks

1. beforeEach, beforeEachValidation, afterEach

• accepts a closure as a first argument passing a Transaction object as a first argument

2. before, beforeValidation, after

• accepts transaction name as a first argument

• accepts a block as a second argument passing a Transaction object as a first argument of it

3. beforeAll, afterAll

• accepts a block as a first argument passing an Array of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when is each hook function executed.

Using PHP API

Example usage of all methods. Very Important The $transaction variable passed to the closure MUST be a
reference. Otherwise the $transaction variable will be passed by value when the closure is executed and the changes
will not be reflected.

<?php

use Dredd\Hooks;

Hooks::beforeAll(function(&$transaction) {

echo "before all";
});

Hooks::beforeEach(function(&$transaction) {

echo "before each";
});

Hooks::before("Machines > Machines collection > Get Machines", function(&$transaction) {

echo "before";
});

Hooks::beforeEachValidation(function(&$transaction) {

echo "before each validation";
});

Hooks::beforeValidation("Machines > Machines collection > Get Machines", function(&
→˓$transaction) {

echo "before validation";
});

(continues on next page)

60 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

Hooks::after("Machines > Machines collection > Get Machines", function(&$transaction) {

echo "after";
});

Hooks::afterEach(function(&$transaction) {

echo "after each";
});

Hooks::afterAll(function(&$transaction) {

echo "after all";
});

Examples

In the dredd-hooks-php repository there is an example laravel application with instructions in the wiki

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

<?php

use Dredd\Hooks;

Hooks::before("Machines > Machines collection > Get Machines", function(&$transaction) {

$transaction->skip = true;
});

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive message.

<?php

use Dredd\Hooks;

Hooks::before("Machines > Machines collection > Get Machines", function(&$transaction) {

$transaction->fail = true;
});

2.7. Hooks 61

https://github.com/ddelnano/dredd-hooks-php/
https://github.com/ddelnano/dredd-hooks-php/wiki/Laravel-Example

Dredd, Release latest

Modifying Transaction Request Body Prior to Execution

<?php

use Dredd\Hooks;

Hooks::before("Machines > Machines collection > Get Machines", function(&$transaction) {

$requestBody = $transaction->request->body;

$requestBody['someKey'] = 'new value';

$transaction->request->body = json_encode($requestBody);
});

Adding or Changing URI Query Parameters to All Requests

<?php

use Dredd\Hooks;

Hooks::beforeEach(function(&$transaction) {

// add query parameter to each transaction here

$paramToAdd = 'api-key=23456';

if (strpos($transaction->fullPath, "?")) {

$transaction->fullPath .= "&{$paramToAdd}";
}

else {

$transaction->fullPath .= "?{$paramToAdd}";
}

});

Handling sessions

<?php

use Dredd\Hooks;

$stash = [];

Hooks::after("Auth > /remoteauto/userpass", function(&$transaction) use (&$stash) {

(continues on next page)

62 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

$parsedBody = json_decode($transaction->real->body);

$stash['token'] = $parseBody->sessionId;
});

Hooks::beforeEach(function(&$transaction) use (&$stash) {

if ($transaction->token) {

$transaction->request->headers->Cookie = "id={$stash['token']}s";
}

});

Writing Dredd Hooks In Python

GitHub repository

Python hooks are using Dredd’s hooks handler socket interface. For using Python hooks in Dredd you have to have
Dredd already installed

Installation

$ pip install dredd_hooks

Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=python --hookfiles=./hooks*.py

Note: If you’re running Dredd inside Docker, read about specifics of getting it working together with non-JavaScript
hooks.

API Reference

Module dredd_hooks imports following decorators:

1. before_each, before_each_validation, after_each

• wraps a function and passes Transaction object as a first argument to it

2. before, before_validation, after

• accepts transaction name as a first argument

• wraps a function and sends a Transaction object as a first argument to it

3. before_all, after_all

• wraps a function and passes an Array of Transaction objects as a first argument to it

2.7. Hooks 63

https://travis-ci.org/apiaryio/dredd-hooks-python
https://github.com/apiaryio/dredd-hooks-python

Dredd, Release latest

Refer to Dredd execution life-cycle to find when is each hook function executed.

Using Python API

Example usage of all methods in

import dredd_hooks as hooks

@hooks.before_all
def my_before_all_hook(transactions):
print('before all')

@hooks.before_each
def my_before_each_hook(transaction):
print('before each')

@hooks.before
def my_before_hook(transaction):
print('before')

@hooks.before_each_validation
def my_before_each_validation_hook(transaction):
print('before each validation')

@hooks.before_validation
def my_before_validation_hook(transaction):
print('before validations')

@hooks.after
def my_after_hook(transaction):
print('after')

@hooks.after_each
def my_after_each(transaction):
print('after_each')

@hooks.after_all
def my_after_all_hook(transactions):
print('after_all')

64 Chapter 2. Contents

Dredd, Release latest

Examples

More complex examples are to be found in the Github repository under the examples directory. If you want to share
your own, don’t hesitate and sumbit a PR.

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

import dredd_hooks as hooks

@hooks.before("Machines > Machines collection > Get Machines")
def skip_test(transaction):
transaction['skip'] = True

Sharing Data Between Steps in Request Stash

If you want to test some API workflow, you may pass data between test steps using the response stash.

import json
import dredd_hooks as hooks

response_stash = {}

@hooks.after("Machines > Machines collection > Create Machine")
def save_response_to_stash(transaction):
saving HTTP response to the stash
response_stash[transaction['name']] = transaction['real']

@hooks.before("Machines > Machine > Delete a machine")
def add_machine_id_to_request(transaction):
#reusing data from previous response here
parsed_body = json.loads(response_stash['Machines > Machines collection > Create␣

→˓Machine'])
machine_id = parsed_body['id']
#replacing id in URL with stashed id from previous response
transaction['fullPath'] = transaction['fullPath'].replace('42', machine_id)

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive message.

import dredd_hooks as hooks

@hooks.before("Machines > Machines collection > Get Machines")
def fail_transaction(transaction):
transaction['fail'] = "Some failing message"

2.7. Hooks 65

https://github.com/apiaryio/dredd-hooks-python/tree/master/examples

Dredd, Release latest

Modifying Transaction Request Body Prior to Execution

import json
import dredd_hooks as hooks

@hooks.before("Machines > Machines collection > Get Machines")
def add_value_to_body(transaction):
parse request body from API description
request_body = json.loads(transaction['request']['body'])

modify request body here
request_body['someKey'] = 'some new value'

stringify the new body to request
transaction['request']['body'] = json.dumps(request_body)

Adding or Changing URI Query Parameters to All Requests

import dredd_hooks as hooks

@hooks.before_each
def add_api_key(transaction):
add query parameter to each transaction here
param_to_add = "api-key=23456"

if '?' in transaction['fullPath']:
transaction['fullPath'] = ''.join((transaction['fullPath'], "&", param_to_add))

else:
transaction['fullPath'] = ''.join((transaction['fullPath'], "?", param_to_add))

Handling sessions

import json
import dredd_hooks as hooks

stash = {}

hook to retrieve session on a login
@hooks.after('Auth > /remoteauth/userpass > POST')
def stash_session_id(transaction):
parsed_body = json.loads(transaction['real']['body'])
stash['token'] = parsed_body['sessionId']

hook to set the session cookie in all following requests
@hooks.before_each
def add_session_cookie(transaction):
if 'token' in stash:
transaction['request']['headers']['Cookie'] = "id=" + stash['token']

66 Chapter 2. Contents

Dredd, Release latest

Remove trailing newline character in expected plain text bodies

import dredd_hooks as hooks

@hooks.before_each
def remove_trailing_newline(transaction):
if transaction['expected']['headers']['Content-Type'] == 'text/plain':

transaction['expected']['body'] = transaction['expected']['body'].rstrip()

Writing Dredd Hooks In Ruby

GitHub repository

Ruby hooks are using Dredd’s hooks handler socket interface. For using Ruby hooks in Dredd you have to have Dredd
already installed

Installation

$ gem install dredd_hooks

Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=ruby --hookfiles=./hooks*.rb

Note: If you’re running Dredd inside Docker, read about specifics of getting it working together with non-JavaScript
hooks.

API Reference

Including module Dredd::Hooks:Methods expands current scope with methods

1. @before_each, before_each_validation, after_each

• accepts a block as a first argument passing a Transaction object as a first argument

2. before, before_validation, after

• accepts transaction name as a first argument

• accepts a block as a second argument passing a Transaction object as a first argument of it

3. before_all, after_all

• accepts a block as a first argument passing an Array of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when is each hook function executed.

2.7. Hooks 67

https://travis-ci.org/apiaryio/dredd-hooks-ruby
https://github.com/apiaryio/dredd-hooks-ruby

Dredd, Release latest

Using Ruby API

Example usage of all methods in

require 'dredd_hooks/methods'

include DreddHooks::Methods

before_all do |transactions|
puts 'before all'

end

before_each do |transaction|
puts 'before each'

end

before "Machines > Machines collection > Get Machines" do |transaction|
puts 'before'

end

before_each_validation do |transaction|
puts 'before each validation'

end

before_validation "Machines > Machines collection > Get Machines" do |transaction|
puts 'before validations'

end

after "Machines > Machines collection > Get Machines" do |transaction|
puts 'after'

end

after_each do |transaction|
puts 'after_each'

end

after_all do |transactions|
puts 'after_all'

end

Examples

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

require 'dredd_hooks/methods'

include DreddHooks::Methods

before "Machines > Machines collection > Get Machines" do |transaction|
(continues on next page)

68 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

transaction['skip'] = true
end

Sharing Data Between Steps in Request Stash

If you want to test some API workflow, you may pass data between test steps using the response stash.

require 'dredd_hooks/methods'
require 'json'

include DreddHooks::Methods

response_stash = {}

after "Machines > Machines collection > Create Machine" do |transaction|
saving HTTP response to the stash
response_stash[transaction['name']] = transaction['real']

end

before "Machines > Machine > Delete a machine" do |transaction|
#reusing data from previous response here
parsed_body = JSON.parse response_stash['Machines > Machines collection > Create␣

→˓Machine']
machine_id = parsed_body['id']

#replacing id in URL with stashed id from previous response
transaction['fullPath'].gsub! '42', machine_id

end

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive message.

require 'dredd_hooks/methods'

include DreddHooks::Methods

before "Machines > Machines collection > Get Machines" do |transaction|
transaction['fail'] = "Some failing message"

end

2.7. Hooks 69

Dredd, Release latest

Modifying Transaction Request Body Prior to Execution

require 'dredd_hooks/methods'
require 'json'

include DreddHooks::Methods

before "Machines > Machines collection > Get Machines" do |transaction|
parse request body from API description
request_body = JSON.parse transaction['request']['body']

modify request body here
request_body['someKey'] = 'some new value'

stringify the new body to request
transaction['request']['body'] = request_body.to_json

end

Adding or Changing URI Query Parameters to All Requests

require 'dredd_hooks/methods'

include DreddHooks::Methods

hooks.before_each do |transaction|

add query parameter to each transaction here
param_to_add = "api-key=23456"

if transaction['fullPath'].include('?')
transaction['fullPath'] += "&" + param_to_add

else
transaction['fullPath'] += "?" + param_to_add

end
end

Handling sessions

require 'dredd_hooks/methods'
require 'json'

include DreddHooks::Methods

stash = {}

hook to retrieve session on a login
hooks.after 'Auth > /remoteauth/userpass > POST' do |transaction|

parsed_body = JSON.parse transaction['real']['body']
stash['token'] = parsed_body['sessionId']

(continues on next page)

70 Chapter 2. Contents

Dredd, Release latest

(continued from previous page)

end

hook to set the session cookie in all following requests
hooks.beforeEach do |transaction|
unless stash['token'].nil?
transaction['request']['headers']['Cookie'] = "id=" + stash['token']

end
end

Remove trailing newline character for in expected plain text bodies

require 'dredd_hooks/methods'

include DreddHooks::Methods

before_each do |transaction|
if transaction['expected']['headers']['Content-Type'] == 'text/plain'

transaction['expected']['body'] = transaction['expected']['body'].gsub(/^\s+|\s+$/g,
→˓"")
end

end

Writing Dredd Hooks In Rust

GitHub repository

Rust hooks are using Dredd’s hooks handler socket interface. For using Rust hooks in Dredd you have to have Dredd
already installed. The Rust library is called dredd-hooks and the correspondig binary dredd-hooks-rust.

Installation

$ cargo install dredd-hooks

Usage

Using Dredd with Rust is slightly different to other languages, as a binary needs to be compiled for execution. The
--hookfiles options should point to compiled hook binaries. See below for an example hooks.rs file to get an idea
of what the source file behind the Rust binary would look like.

$ dredd apiary.apib http://127.0.0.1:3000 --server=./rust-web-server-to-test --
→˓language=rust --hookfiles=./hook-file-binary

Note: If you’re running Dredd inside Docker, read about specifics of getting it working together with non-JavaScript
hooks.

2.7. Hooks 71

https://crates.io/crates/dredd-hooks
https://github.com/hobofan/dredd-hooks-rust

Dredd, Release latest

API Reference

In order to get a general idea of how the Rust Hooks work, the main executable from the package dredd-hooks is
an HTTP Server that Dredd communicates with and an RPC client. Each hookfile then acts as a corresponding RPC
server. So when Dredd notifies the Hooks server what transaction event is occuring the hooks server will execute all
registered hooks on each of the hookfiles RPC servers.

You’ll need to know a few things about the HooksServer type in the dredd-hooks package.

1. The HooksServer type is how you can define event callbacks such as beforeEach, afterAll, etc..

2. To get a HooksServer struct you must do the following;

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();

// Define all your event callbacks here

// HooksServer::start_from_env will block and allow the RPC server
// to receive messages from the main `dredd-hooks-rust` process.
HooksServer::start_from_env(hooks);

}

3. Callbacks receive a Transaction instance, or an array of them.

Runner Callback Events

The HooksServer type has the following callback methods.

1. before_each, before_each_validation, after_each

• accepts a function as a first argument passing a Transaction object as a first argument

2. before, before_validation, after

• accepts transaction name as a first argument

• accepts a function as a second argument passing a Transaction object as a first argument of it

3. before_all, after_all

• accepts a function as a first argument passing a Vec of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when each hook callback is executed.

72 Chapter 2. Contents

Dredd, Release latest

Using the Rust API

Example usage of all methods.

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();
hooks.before("/message > GET", Box::new(move |tr| {

println!("before hook handled");
tr

}));
hooks.after("/message > GET", Box::new(move |tr| {

println!("after hook handled");
tr

}));
hooks.before_validation("/message > GET", Box::new(move |tr| {

println!("before validation hook handled");
tr

}));
hooks.before_all(Box::new(move |tr| {

println!("before all hook handled");
tr

}));
hooks.after_all(Box::new(move |tr| {

println!("after all hook handled");
tr

}));
hooks.before_each(Box::new(move |tr| {

println!("before each hook handled");
tr

}));
hooks.before_each_validation(Box::new(move |tr| {

println!("before each validation hook handled");
tr

}));
hooks.after_each(Box::new(move |tr| {

println!("after each hook handled");
tr

}));
HooksServer::start_from_env(hooks);

}

2.7. Hooks 73

Dredd, Release latest

Examples

How to Skip Tests

Any test step can be skipped by setting the value of the skip field of the Transaction instance to true.

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();

// Runs only before the "/message > GET" test.
hooks.before("/message > GET", Box::new(|mut tr| {

// Set the skip flag on this test.
tr.insert("skip".to_owned(), true.into());
// Hooks must always return the (modified) Transaction(s) that were passed in.
tr

}));
HooksServer::start_from_env(hooks);

}

Failing Tests Programmatically

You can fail any step by setting the value of the fail field of the Transaction instance to true or any string with a
descriptive message.

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();
hooks.before("/message > GET", Box::new(|mut tr| {

// .into() can be used as an easy way to convert
// your value into the desired Json type.
tr.insert("fail".to_owned(), "Yay! Failed!".into());
tr

}));
HooksServer::start_from_env(hooks);

}

74 Chapter 2. Contents

Dredd, Release latest

Modifying the Request Body Prior to Execution

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();
hooks.before("/message > GET", Box::new(|mut tr| {

// Try to access the "request" key as an object.
// (This will panic should the "request" key not be present.)
tr["request"].as_object_mut().unwrap()

.insert("body".to_owned(), "Hello World!".into());

tr
}));
HooksServer::start_from_env(hooks);

}

Writing a hooks handler for a new language

Dredd itself is written in JavaScript, so having hooks in JavaScript is native to it. Other languages need so-called hooks
handlers.

Several hooks handlers already exist, either maintained by Dredd authors or external contributors. If you didn’t find
your favorite language among them, at this place you can learn how to create a new hooks handler.

Note: Deserve eternal praise and contribute hooks handler for Java! See #875

What is a hooks handler?

Hooks handler is a process running separately from Dredd, usually started by Dredd as a child process when invoking
Dredd with the --language option. When Dredd performs testing, it communicates with the hooks handler over TCP
socket. The hooks handler runs hooks for each HTTP transaction and lets Dredd know whether something got modified.

Hooks handler life cycle

1. Dredd starts the command given in the --language option as its child process (subprocess). Paths to files with
hooks given in --hookfiles are resolved to absolute paths and given to the child process as arguments.

2. The hooks handler reads paths to hooks from arguments and loads the hooks code.

3. The hooks handler opens a TCP socket on localhost, port 61321.

4. Dredd waits for a moment and then tries to connect to localhost, port 61321.

5. For each type of hooks Dredd creates a message and sends it to the socket. The message contains UUID and
serialized transaction object (or an array of them, in case of beforeAll, afterAll). Individual messages are sent
as JSON documents separated by a newline.

6. Hooks handler reads a message, calls a corresponding hook code, and sends back a message with modified
contents.

2.7. Hooks 75

https://github.com/apiaryio/dredd/issues/875

Dredd, Release latest

7. Dredd awaits a message with corresponding UUID. Once it arrives, Dredd overwrites its internal HTTP trans-
action data with the ones from the incoming message.

Implementation guide

A hooks handler is a CLI command, which implements following:

• It accepts paths to hook files as arguments. They are already passed resolved as absolute paths, in the right order.

• It allows users to register hook functions in the hook files, i.e. it provides a hooks API similar to those in other
hooks handler implementations (see JavaScript, Python, Ruby). It allows to register all types of hooks supported
by Dredd.

• It loads the hook files and registers any hook functions found in them for later execution.

• It runs a TCP socket server on port 61321 and prints Starting to stdout when ready.

76 Chapter 2. Contents

Dredd, Release latest

Handling hooks

When any data is received by the TCP server, the hooks handler:

• Adds every received character to a buffer.

• When the delimiter LINE FEED (LF) character encoded as UTF-8 (0A hex, \n in most languages) is received:

– Parses the message in the buffer as JSON.

– Finds the hook type in the event key of the received object and executes respective registered hook func-
tion(s). Beware, beforeEach and afterEach are overloaded - read the TCP socket message format care-
fully.

• When a hook function is being executed:

– Passes the value of the data key of the received object to the executed hook function.

– Allows the hook function to modify the data.

• When a hook function is done:

– Takes the modified data and serializes it back to JSON with the same uuid as it has received

– Sends the JSON back as a TCP message

– Sends a LINE FEED (LF) character encoded as UTF-8 (0A hex, \n in most languages) as TCP message
delimiter

TCP socket message format

• transaction (object)

– uuid: 234567-asdfghjkl (string) - ID used for unique identification of the message on both server and
client sides

– event: event (enum) - Hook type

∗ beforeAll (string) - Signals the hooks handler to run the beforeAll hooks

∗ beforeEach (string) - Signals the hooks handler to run the beforeEach and before hooks

∗ beforeEachValidation (string) - Signals the hooks handler to run the beforeEachValidation and
beforeValidation hooks

∗ afterEach (string) - Signals the hooks handler to run the after and afterEach hooks

∗ afterAll (string) - Signals the hooks handler to run the afterAll hooks

– data (enum) - Data passed as an argument to the hook function

∗ (object) - Single transaction object

∗ (array) - An array of transaction objects, containing all transactions Dredd currently works with; sent
for beforeAll and afterAll events

2.7. Hooks 77

Dredd, Release latest

Termination

When there is an error or when the testing is done, Dredd signals the hooks handler process to terminate. This is done
repeatedly with delays. When termination timeout is over, Dredd loses its patience and kills the process forcefully.

• retry delays can be configured by --hooks-worker-term-retry

• timeout can be configured by --hooks-worker-term-timeout

On Linux or macOS, Dredd uses the SIGTERM signal to tell the hooks handler process it should terminate. On Windows,
where signals do not exist, Dredd sends the END OF TEXT character (03 hex, which is ASCII representation of Ctrl+C)
to standard input of the process.

End-to-end test suite

There is a BDD test suite called dredd-hooks-template, which ensures that the public interface of each hooks handler
works as Dredd expects. The test suite is written in Gherkin and uses Cucumber as a test runner.

When developing a new hooks handler, make sure it passes the test suite. Third party hooks handlers not passing the
test suite cannot be endorsed by Dredd maintainers, integrated with Dredd’s --language option, or added to Dredd’s
documentation.

If you have any issues integrating the test suite to your project, reach out to the maintainers in Dredd issues, we’re happy
to help!

Configuration options

There are several configuration options, which can help you during development of the hooks handler:

• --hooks-worker-timeout

• --hooks-worker-connect-timeout

• --hooks-worker-connect-retry

• --hooks-worker-after-connect-wait

• --hooks-worker-term-timeout

• --hooks-worker-term-retry

Warning: Behavior of the following options is currently broken (see #917) and it is recommended to stick to
localhost and port 61321 until fixed:

• --hooks-worker-handler-host

78 Chapter 2. Contents

https://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/apiaryio/dredd-hooks-template
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/cucumber/cucumber-js
https://github.com/apiaryio/dredd/issues
https://github.com/apiaryio/dredd/issues/917

Dredd, Release latest

• --hooks-worker-handler-port

Note: The options mention hooks worker in their names, but it stands for the same as hooks handler. There is a
proposal to rename the options in the future: #1101

Need help? No problem!

If you have any questions, please:

• Have a look at the reference Python and Ruby implementations.

• If your language is compiled, check out how Go and Rust are done.

• File an issue and get help from Dredd maintainers.

Note: If you don’t see your favorite language, it’s fairly easy to contribute support for it! Join the Contributors Hall
of Fame where we praise those who added support for additional languages.

(Especially if your language of choice is Java, there’s an eternal fame and glory waiting for you - see #875)

2.7.3 Transaction names

Transaction names are path-like strings, which allow hook functions to address specific HTTP transactions. They
intuitively follow the structure of your API description document.

You can get a list of all transaction names available in your API description document by calling Dredd with the
--names option:

API Blueprint

$ dredd ./blog.apib http://127.0.0.1:3000 --names
info: Articles > List articles
skip: GET (200) /articles
info: Articles > Publish an article
skip: POST (201) /articles
complete: 0 passing, 0 failing, 0 errors, 2 skipped, 2 total
complete: Tests took 9ms

As you can see, the document ./blog.apib contains two transactions, which you can address in hooks as:

• Articles > List articles

• Articles > Publish an article

OpenAPI 2

$ dredd ./blog.yaml http://127.0.0.1:3000 --names
info: Articles > List articles > 200 > application/json; charset=utf-8
skip: GET (200) /articles
info: Articles > Publish an article > 201 > application/json; charset=utf-8
skip: POST (201) /articles

(continues on next page)

2.7. Hooks 79

https://github.com/apiaryio/dredd/issues/1101
https://github.com/apiaryio/dredd-hooks-python
https://github.com/apiaryio/dredd-hooks-ruby
https://github.com/snikch/goodman
https://github.com/hobofan/dredd-hooks-rust
https://github.com/apiaryio/dredd/issues/new
https://github.com/apiaryio/dredd/issues/875

Dredd, Release latest

(continued from previous page)

complete: 0 passing, 0 failing, 0 errors, 2 skipped, 2 total
complete: Tests took 9ms

As you can see, the document ./blog.yaml contains two transactions, which you can address in hooks as:

• Articles > List articles > 200 > application/json; charset=utf-8

• Articles > Publish an article > 201 > application/json; charset=utf-8

Note: The transaction names and the --names workflow mostly do their job, but with many documented flaws. A
successor to transaction names is being designed in #227

2.7.4 Types of hooks

Hooks get executed at specific points in Dredd’s execution life cycle. Available types of hooks are:

• beforeAll called with all HTTP transactions before the whole test run

• beforeEach called before each HTTP transaction

• before called before a single HTTP transaction

• beforeEachValidation called before each HTTP transaction is validated

• beforeValidation called before a single HTTP transaction is validated

• after called after a single HTTP transaction

• afterEach called after each HTTP transaction

• afterAll called with all HTTP transactions after the whole test run

2.7.5 Hooks inside Docker

As mentioned in Supported languages, running hooks written in languages other than JavaScript requires a dedicated
hooks handler. Hooks handler is a separate process, which communicates with Dredd over a TCP socket.

If you’re running Dredd inside Docker, you may want to use a separate container for the hooks handler and then run
all your containers together as described in the Docker Compose section.

However, hooks were not originally designed with this scenario in mind. Dredd gets a name of (or path to) the hooks
handler in --language and then starts it as a child process. To work around this, fool Dredd with a dummy script
and set --hooks-worker-handler-host together with --hooks-worker-handler-port to point Dredd’s TCP
communication to the other container.

Note: The issue described above is tracked in #755.

80 Chapter 2. Contents

https://github.com/apiaryio/dredd/labels/Epic%3A%20Transaction%20Names
https://github.com/apiaryio/dredd/issues/227
https://github.com/apiaryio/dredd/issues/748#issuecomment-285355519
https://github.com/apiaryio/dredd/issues/755

Dredd, Release latest

2.8 Data Structures

Documentation of various data structures in both Gavel and Dredd. MSON notation is used to describe the data struc-
tures.

2.8.1 Transaction (object)

Transaction object is passed as a first argument to hook functions and is one of the main public interfaces in Dredd.

• id: GET (200) /greetings - identifier for this transaction

• name: ./api-description.apib > My API > Greetings > Hello, world! > Retrieve Message
> Example 2 (string) - reference to the transaction definition in the original API description document (see
also Dredd Transactions)

• origin (object) - reference to the transaction definition in the original API description document (see also Dredd
Transactions)

– filename: ./api-description.apib (string)

– apiName: My Api (string)

– resourceGroupName: Greetings (string)

– resourceName: Hello, world! (string)

– actionName: Retrieve Message (string)

– exampleName: Example 2 (string)

• host: 127.0.0.1 (string) - server hostname without port number

• port: 3000 (number) - server port number

• protocol: https: (enum[string]) - server protocol

– https: (string)

– http: (string)

• fullPath: /message (string) - expanded URI Template with parameters (if any) used for the HTTP request Dredd
performs to the tested server

• request (object) - the HTTP request Dredd performs to the tested server, taken from the API description

– body: Hello world!\n (string)

– bodyEncoding (enum) - can be manually set in hooks

∗ utf-8 (string) - indicates body contains a textual content encoded in UTF-8

∗ base64 (string) - indicates body contains a binary content encoded in Base64

– headers (object) - keys are HTTP header names, values are HTTP header contents

– uri: /message (string) - request URI as it was written in API description

– method: POST (string)

• expected (object) - the HTTP response Dredd expects to get from the tested server

– statusCode: 200 (string)

– headers (object) - keys are HTTP header names, values are HTTP header contents

– body (string)

2.8. Data Structures 81

https://github.com/apiaryio/gavel.js
https://apiblueprint.org/documentation/mson/tutorial.html
https://github.com/apiaryio/dredd-transactions#user-content-data-structures
https://github.com/apiaryio/dredd-transactions#user-content-data-structures
https://github.com/apiaryio/dredd-transactions#user-content-data-structures
https://tools.ietf.org/html/rfc6570.html

Dredd, Release latest

– bodySchema (object) - JSON Schema of the response body

• real (object) - the HTTP response Dredd gets from the tested server (present only in after hooks)

– statusCode: 200 (string)

– headers (object) - keys are HTTP header names, values are HTTP header contents

– body (string)

– bodyEncoding (enum)

∗ utf-8 (string) - indicates body contains a textual content encoded in UTF-8

∗ base64 (string) - indicates body contains a binary content encoded in Base64

• skip: false (boolean) - can be set to true and the transaction will be skipped

• fail: false (enum) - can be set to true or string and the transaction will fail

– (string) - failure message with details why the transaction failed

– (boolean)

• test (Transaction Test (object)) - test data passed to Dredd’s reporters

• errors (Test Runtime Error (object)) - Transaction runtime errors

• results (Transaction Results (object)) - testing results

2.8.2 Transaction Test (object)

• start (Date) - start of the test

• end (Date) - end of the test

• duration (number) - duration of the test in milliseconds

• startedAt (number) - unix timestamp, transaction.startedAt

• title (string) - transaction.id

• request (object) - transaction.request

• actual (object) - transaction.real

• expected (object) - transaction.expected

• status (enum) - whether the validation passed or not, defaults to empty string

– pass (string)

– fail (string)

– skip (string)

• message (string) - concatenation of all messages from all Gavel Error (object) in results or Dredd’s custom
message (e.g. “failed in before hook”)

• results (Dredd’s transaction.results)

• valid (boolean)

• origin (object) - transaction.origin

82 Chapter 2. Contents

Dredd, Release latest

2.8.3 Transaction Results (object)

Transaction result equals to the result of the Gavel validation library.

• valid (boolean) - Indicates whether the transaction is valid.

• fields (object) - uri - Gavel Validation Result Field (object) - method - Gavel Validation Result Field (object) -
statusCode - Gavel Validation Result Field (object) - headers - Gavel Validation Result Field (object) - body -
Gavel Validation Result Field (object)

2.8.4 Gavel Validation Result Field (object)

Can be seen also here.

• valid (boolean) - Whether the HTTP message field is valid

• kind (enum[string], nullable) - The validation kind applied to the expected/actual data (how the values were
compared) - json - text

• values (object)

– expected (any) - Expected value of the HTTP message field

– actual (any) - Actual value of the HTTP message field

• errors (array[Gavel Error (object)])

2.8.5 Gavel Error (object)

• message (string) - Error message

• location (object, optional) - Kind-dependent extra error information

– pointer (string) - JSON Pointer path

– property (array[string]) - A deep property path

2.8.6 Test Runtime Error (object)

Whenever an exception occurs during a test run it’s being recorded under the errors property of the test.

Test run error has the following structure:

• message (string) - Error message.

• severity (enum[string]) - Severity of the occurred error - warning - error

2.8.7 Apiary Reporter Test Data (object)

• testRunId (string) - ID of the test run, recieved from Apiary

• origin (object) - test.origin

• duration (number) - duration of the test in milliseconds

• result (string) - test.status

• startedAt (number) - test.startedAt

• results (object)

2.8. Data Structures 83

https://github.com/apiaryio/gavel.js
https://relishapp.com/apiary/gavel/docs/data-validators-and-output-format#validators-output-format
https://tools.ietf.org/html/rfc6901.html

Dredd, Release latest

– request (object) - test.request

– realResponse (object) - test.actual

– expectedResponse (object) - test.expected

– errors (array[Test Runtime Error (object)]) - Test run errors (not validation errors)

– validationResult (Transaction Results (object)) - test.results

2.8.8 Internal Apiary Data Structures

These are private data structures used in Apiary internally and they are documented incompletely. They’re present in
this document just to provide better insight on what and how Apiary internally saves. It is closely related to what you
can see in documentation for Apiary Tests API for authenticated test reports.

Apiary Test Run (object)

Also known as stats in Dredd’s code.

• result

– tests: 0 (number, default) - total number of tests

– failures: 0 (number, default)

– errors: 0 (number, default)

– passes: 0 (number, default)

– skipped: 0 (number, default)

– start: 0 (number, default)

– end: 0 (number, default)

– duration: 0 (number, default)

Apiary Test Step (object)

• results

– request (object) - test.request

– realResponse (object) - test.actual

– expectedResponse (object) - test.expected

– errors (array[Test Runtime Error (object)]) - Test runtime errors

– validationResult (Transaction Results (object)) - test.results

84 Chapter 2. Contents

https://github.com/apiaryio/dredd/blob/master/packages/dredd/ApiaryReportingApi.apib

Dredd, Release latest

2.9 Internals

Dredd itself is a command-line Node.js application written in modern JavaScript. Contents:

• Maintainers

• Contributing

• Contributing to documentation

• Windows support

• API description parsing

• Architecture

2.9.1 Maintainers

Apiary is the main author and maintainer of Dredd’s upstream repository. Currently responsible people are:

• @honzajavorek - product decisions, feature requests, lead of development

• @artem-zakharchenko - development

Hall of fame

Dredd supports many programming languages thanks to the work of several contributors. They deserve eternal praise
for dedicating time to create, improve, and maintain the respective hooks handlers:

• @ddelnano (PHP, Go)

• @gonzalo-bulnes (Ruby)

• @hobofan (Rust)

• @snikch (Go)

• @ungrim97 (Perl)

Big thanks also to @netmilk, the original author of Dredd and Gavel!

2.9.2 Contributing

We are grateful for any contributions made by the community. Even seemingly small contributions such as fixing a
typo in the documentation or reporting a bug are very appreciated!

To learn the basics of contributing to Dredd, please read the contributing documentation, placed in Dredd’s GitHub
repository.

2.9. Internals 85

https://en.wikipedia.org/wiki/Command-line_interface
https://nodejs.org/
https://apiary.io
https://github.com/apiaryio/dredd
https://github.com/honzajavorek
https://github.com/artem-zakharchenko
https://github.com/ddelnano
https://github.com/gonzalo-bulnes
https://github.com/hobofan
https://github.com/snikch
https://github.com/ungrim97
https://github.com/netmilk/
https://github.com/apiaryio/dredd/blob/master/CONTRIBUTING.md#readme

Dredd, Release latest

Installing Dredd for development

To hack Dredd locally, clone the repository and run npm install to install JavaScript dependencies. Then run npm
test to verify everything works as expected. If you want to run Dredd during development, you can do so using
./bin/dredd.

Note: See also the full installation guide.

Commit message format

Semantic Release automatically manages releasing of new Dredd versions to the npm registry. It makes sure correct
version numbers get increased according to the meaning of your changes once they are added to the master branch.
This requires all commit messages to be in a specific format, called Conventional Changelog:

<type>: <message>

Where <type> is a prefix, which tells Semantic Release what kind of changes you made in the commit:

• feat - New functionality added (results in _minor_ version bump)

• fix - Broken functionality fixed (results in _patch_ version bump)

• refactor - Changes in code, but no changes in behavior

• perf - Performance improved

• style - Changes in code formatting

• test - Changes in tests

• docs - Changes in documentation

• chore - Changes in package or repository configuration

In the rare cases when your changes break backwards compatibility, the message must include BREAKING CHANGE:,
followed by an explanation. That will result in bumping the major version.

feat: add option "--require" to support custom transpilers

Remove bult-in compilation of CoffeeScript.

Close #1234

BREAKING CHANGE: Hookfiles using CoffeeScript are not supported
out of the box anymore. Instead manually install the coffeescript
module and add --require=coffeescript/register to your command.

• See existing commits as a reference

• Commitizen CLI can help you to create correct commit messages

• Run npm run lint to validate format of your messages

• Use refactor together with BREAKING CHANGE: for changes in code which only remove features (there doesn’t
seem to be a better category for that use case) – see real-world example

86 Chapter 2. Contents

https://github.com/semantic-release/semantic-release
https://www.npmjs.com/
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#user-content--git-commit-guidelines
https://github.com/apiaryio/dredd/commits/master
https://github.com/commitizen/cz-cli
https://github.com/apiaryio/dredd/commit/a5fe81b

Dredd, Release latest

GitHub labels

Todo: This section is not written yet. See #808.

Programming language

Dredd is written in modern JavaScript, ran by Node.js, and distributed by npm.

Previously Dredd was written in CoffeeScript, and it was only recently converted to modern JavaScript. That’s why
sometimes the code does not feel very nice. Any efforts to refactor the code to something more human-friendly are
greatly appreciated.

C++ dependencies

Dredd uses Drafter for parsing API Blueprint documents. Drafter is written in C++ and needs to be compiled during
installation. Because that can cause a lot of problems in some environments, there’s also pure JavaScript version of
the parser, drafter.js. Drafter.js is fully equivalent, but it can have slower performance. Therefore there’s drafter-npm
package, which tries to compile the C++ version of the parser and in case of failure it falls back to the JavaScript
equivalent. Dredd depends on the drafter-npm package.

That still proved problematic for Dredd though. The current solution is to provide an npm-shrinkwrap.json file
with the Dredd Transactions library, which completely excludes protagonist, i.e. the compiled C++ binding. Un-
like package-lock.json, the file can be distributed inside an npm package. The exclusion is performed by a
postshrinkwrap npm script. This didn’t work well with Dredd’s package-lock.json, so currently Dredd’s de-
pendency tree is not locked for local or CI installations.

Supported Node.js versions

Given the table with LTS schedule, only versions marked as Current, Maintenance, or Active are supported, until
their Maintenance End. The testing matrix of Dredd’s CI builds must contain all currently supported versions and
must not contain any unsupported versions. The same applies for the underlying libraries, such as Dredd Transactions
or Gavel. In appveyor.yml the latest supported Node.js version should be used. When dropping support for Node.js
versions, remember to update the installation guide.

When dropping support for a certain Node.js version, it should be removed from the testing matrix, and it must be
delivered as a breaking change, which increments Dredd’s major version number.

Dependencies

New versions of dependencies are monitored by Dependabot. Vulnerabilities are monitored by Snyk.

Dependencies should not be specified in a loose way - only exact versions are allowed. This is ensured by .npmrc and
the lock file. Any changes to dependencies (version upgrades included) are a subject to internal policies and must be
first checked and approved by the maintainers before merged to master. This is because we are trying to be good Open
Source citizens and to do our best to comply with licenses of all our dependencies.

As a contributor, before adding a new dependency or upgrading an existing one, please try to make sure the project
and all its transitive dependencies feature standard permissive licenses, including correct copyright holders and license
texts.

2.9. Internals 87

https://github.com/apiaryio/dredd/issues/808
https://nodejs.org/
https://www.npmjs.com/
https://coffeescript.org
https://github.com/apiaryio/drafter
https://apiblueprint.org
https://github.com/apiaryio/drafter.js
https://github.com/apiaryio/drafter-npm/
https://github.com/apiaryio/drafter-npm/
https://docs.npmjs.com/cli/v6/configuring-npm/shrinkwrap-json
https://github.com/apiaryio/dredd-transactions
https://github.com/apiaryio/protagonist
https://github.com/nodejs/Release
https://github.com/apiaryio/dredd-transactions
https://github.com/apiaryio/gavel.js
https://dependabot.com/
https://snyk.io/test/npm/dredd
https://github.com/davglass/license-checker

Dredd, Release latest

Versioning

Dredd follows Semantic Versioning. The releasing process is fully automated by Semantic Release.

There are two release tags: latest and stable. Currently they both point to the latest version. The stable tag exists
only for backward compatibility with how Dredd used to be distributed in the past. It might get removed in the future.

Testing

Use npm test to run all tests. Dredd uses Mocha as a test framework. Its default options are in the test/mocha.opts
file.

Linting

Dredd uses eslint to test the quality of the JavaScript codebase. We are adhering to the Airbnb’s styleguide. Several
rules are disabled to allow us to temporarily have dirty code after we migrated from CoffeeScript to JavaScript. The
long-term intention is to remove all these exceptions.

The linter is optional for local development to make easy prototyping and working with unpolished code, but it’s en-
forced on the CI level. It is recommended you integrate eslint with your favorite editor so you see violations immediately
during coding.

Changelog

Changelog is in form of GitHub Releases. Currently it’s automatically generated by Semantic Release.

We want to have a one-page changelog in the documentation as well - see #740.

Coverage

Tests coverage is a metric which helps developer to see which code is not tested. This is useful when introducing new
code in Pull Requests or when maintaining under-tested old code (coverage shows that changes to such code are without
any safety net).

Note: Due to reoccurring service denial from Coveralls, we have decided to remove any test coverage integration from
Dredd. The topic of test coverage usefulness is to be discussed, and a suitable solution to be presented.

Hacking Apiary reporter

If you want to build something on top of the Apiary Reporter, note that it uses a public API described in Apiary Tests
API for authenticated test reports

Following data are sent over the wire to Apiary:

• Apiary Reporter Test Data

The APIARY_API_URL environment variable allows the developer to override the host of the Apiary Tests API.

88 Chapter 2. Contents

https://semver.org/
https://github.com/semantic-release/semantic-release
https://mochajs.org/
https://eslint.org/
https://github.com/airbnb/javascript
https://eslint.org/
https://github.com/apiaryio/dredd/releases
https://github.com/semantic-release/semantic-release
https://github.com/apiaryio/dredd/issues/740
https://github.com/apiaryio/dredd/blob/master/packages/dredd/ApiaryReportingApi.apib
https://github.com/apiaryio/dredd/blob/master/packages/dredd/ApiaryReportingApi.apib

Dredd, Release latest

2.9.3 Contributing to documentation

The documentation is written as code in the reStructuredText format and its source files are located in the docs directory.
It is published automatically by the ReadTheDocs when the master branch is updated.

Even though alternatives exist (dredd.readthedocs.io, dredd.rtfd.io, or dredd.io), the documentation should always be
linked canonically as https://dredd.org.

Building documentation locally

The documentation is built by Sphinx. To render it on your computer, you need Python 3.

1. Get Python 3. ReadTheDocs build the documentation with Python 3.6, so make sure you have this version.

2. Create a virtual environment and activate it:

python3 -m venv ./venv
source ./venv/bin/activate

3. Install dependencies for the docs:

(venv)$ pip install -r docs/requirements.txt

Note: We are not using pipenv as it is not yet properly supported by ReadTheDocs.

Now you can use following commands:

• npm run docs:lint - Checks quality of the documentation (broken internal and external links, reStructured-
Text markup mistakes, etc.)

• npm run docs:build - Builds the documentation

• npm run docs:serve - Runs live preview of the documentation on http://127.0.0.1:8000

Installation on ReadTheDocs

The final documentation gets published by ReadTheDocs. We force their latest build image in the readthedocs.yml
to get Python 3.

Writing documentation

• Read the reStructuredText primer

• No explicit newlines, please - write each paragraph as a single long line and turn on word wrap in your editor

• Explicit is better than implicit:

– Bad: npm i -g

– Good: npm install --global

• When using Dredd’s long CLI options in tests or documentation, please always use the notation with = wherever
possible:

– Bad: --path /dev/null

– Good: --path=/dev/null

2.9. Internals 89

http://www.writethedocs.org/guide/docs-as-code/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://github.com/apiaryio/dredd/tree/master/docs
https://readthedocs.org/
https://dredd.org
http://www.sphinx-doc.org/
https://www.python.org/
https://www.python.org/downloads/
https://readthedocs.org/
https://docs.python.org/3/library/venv.html
https://github.com/pypa/pipenv
https://readthedocs.org/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

Dredd, Release latest

While both should work, the version with = feels more like standard GNU-style long options and it makes arrays
of arguments for spawn more readable.

• Do not title case headings, life’s too short to spend it figuring out title casing correctly

• Using 127.0.0.1 (in code, tests, documentation) is preferred over localhost (see #586)

• Be consistent

Images

Images are in the docs/_static/images directory. For images exported in sophisticated graphic formats, the source
file should be committed to Git and placed in the same directory, with the same basename, just with different extension.

Note: The .key files are not SSH keys, they’re Keynote source files. It is @honzajavorek’s deviation to draw charts
in Keynote and to export them as PNGs:

File » Export To » Images... » Format: PNG

Sphinx extensions

There are several extensions to Sphinx, which add custom directives and roles to the reStructuredText syntax:

CLI options Allows to automatically generate documentation of Dredd’s CLI options from the JSON file which spec-
ifies them. Usage: .. cli-options:: ./path/to/file.json

GitHub issues Simplifies linking GitHub issues. Usage: :ghissue:`drafter#123`

GitHub links checker Fails the docs build if there’s an absolute link (github.com/apiaryio/dredd/blob/
master) to a non-existing local file

API Blueprint spec Simplifies linking the API Blueprint spec. Usage: :apib:`schema-section`

MSON spec Simplifies linking the MSON spec. Usage: :mson:`353-type-attribute`

OpenAPI 2 spec Simplifies linking the OpenAPI 2 spec. Usage: :openapi2:`parameterobject`

OpenAPI 3 spec Simplifies linking the OpenAPI 3 spec. Usage: :openapi3:`parameterobject`

RFCs Simplifies linking the RFCs. Not a custom extension in fact, this is provided by Sphinx out of the box. Usage:
:rfc:`1855`

The extensions are written in Python 3 and are heavily based on the knowledge shared in the FOSDEM 2018 talk by
Stephen Finucane. Extensions use Python’s unittest for tests. You can use npm run docs:test-extensions to run
them.

Redirects

Redirects are documented in the docs/redirects.yml file. They need to be manually set in the ReadTheDocs ad-
ministration. It’s up to Dredd maintainers to keep the list in sync with reality.

You can use the rtd-redirects tool to programmatically upload the redirects from docs/redirects.yml to the
ReadTheDocs admin interface.

90 Chapter 2. Contents

https://en.wikipedia.org/wiki/Letter_case#Headings_and_publication_titles
https://github.com/apiaryio/dredd/issues/586
https://www.apple.com/keynote/
https://github.com/honzajavorek
https://apiblueprint.org
https://apiblueprint.org/documentation/mson/tutorial.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://archive.fosdem.org/2018/schedule/event/automating_documentation_with_sphinx_extensions/
https://archive.fosdem.org/2018/schedule/event/automating_documentation_with_sphinx_extensions/
https://docs.python.org/3/library/unittest.html
https://readthedocs.org/dashboard/dredd/redirects/
https://readthedocs.org/dashboard/dredd/redirects/
https://github.com/honzajavorek/rtd-redirects

Dredd, Release latest

2.9.4 Windows support

Dredd is tested on the AppVeyor, a Windows-based CI. There are still several known issues when using Dredd on
Windows, but the long-term intention is to support it without any compromises.

2.9.5 API description parsing

Todo: This section is not written yet. See #820.

2.9.6 Architecture

Todo: This section is not written yet. See #820.

2.9. Internals 91

https://www.appveyor.com/
https://github.com/apiaryio/dredd/labels/Context%3A%20Windows
https://github.com/apiaryio/dredd/issues/820
https://github.com/apiaryio/dredd/issues/820

Dredd, Release latest

92 Chapter 2. Contents

CHAPTER

THREE

USEFUL LINKS

• GitHub Repository

• Bug Tracker

• Changelog

93

https://github.com/apiaryio/dredd
https://github.com/apiaryio/dredd/issues?q=is%3Aopen
https://github.com/apiaryio/dredd/releases

Dredd, Release latest

94 Chapter 3. Useful Links

CHAPTER

FOUR

EXAMPLE APPLICATIONS

• Express.js

• Laravel

• Laravel & OpenAPI 3

• Ruby on Rails

95

https://github.com/apiaryio/dredd-example
https://github.com/ddelnano/dredd-hooks-php/wiki/Laravel-Example
https://github.com/AndyWendt/laravel-dredd-openapi-v3
https://gitlab.com/theodorton/dredd-test-rails/

Dredd, Release latest

96 Chapter 4. Example Applications

INDEX

Symbols
--color

command line option, 38
--config

command line option, 38
--custom

command line option, 38
--details

command line option, 38
--dry-run

command line option, 39
--header

command line option, 39
--help

command line option, 39
--hookfiles

command line option, 39
--hooks-worker-after-connect-wait

command line option, 39
--hooks-worker-connect-retry

command line option, 39
--hooks-worker-connect-timeout

command line option, 39
--hooks-worker-handler-host

command line option, 39
--hooks-worker-handler-port

command line option, 39
--hooks-worker-term-retry

command line option, 39
--hooks-worker-term-timeout

command line option, 39
--hooks-worker-timeout

command line option, 39
--init

command line option, 39
--inline-errors

command line option, 39
--language

command line option, 39
--loglevel

command line option, 39
--method

command line option, 39
--names

command line option, 39
--only

command line option, 39
--output

command line option, 40
--path

command line option, 40
--reporter

command line option, 40
--require

command line option, 40
--server

command line option, 40
--server-wait

command line option, 40
--sorted

command line option, 40
--user

command line option, 40
--version

command line option, 40
-a

command line option, 39
-d

command line option, 38
-e

command line option, 39
-f

command line option, 39
-g

command line option, 40
-h

command line option, 39
-i

command line option, 39
-j

command line option, 38
-l

command line option, 39
-m

97

Dredd, Release latest

command line option, 39
-n

command line option, 39
-o

command line option, 40
-p

command line option, 40
-r

command line option, 40
-s

command line option, 40
-u

command line option, 40
-x

command line option, 39
-y

command line option, 39

A
api-description-document

command line option, 37
api-location

command line option, 37

C
command line option

--color, 38
--config, 38
--custom, 38
--details, 38
--dry-run, 39
--header, 39
--help, 39
--hookfiles, 39
--hooks-worker-after-connect-wait, 39
--hooks-worker-connect-retry, 39
--hooks-worker-connect-timeout, 39
--hooks-worker-handler-host, 39
--hooks-worker-handler-port, 39
--hooks-worker-term-retry, 39
--hooks-worker-term-timeout, 39
--hooks-worker-timeout, 39
--init, 39
--inline-errors, 39
--language, 39
--loglevel, 39
--method, 39
--names, 39
--only, 39
--output, 40
--path, 40
--reporter, 40
--require, 40
--server, 40

--server-wait, 40
--sorted, 40
--user, 40
--version, 40
-a, 39
-d, 38
-e, 39
-f, 39
-g, 40
-h, 39
-i, 39
-j, 38
-l, 39
-m, 39
-n, 39
-o, 40
-p, 40
-r, 40
-s, 40
-u, 40
-x, 39
-y, 39
api-description-document, 37
api-location, 37

configuration (global variable or constant), 41
configuration.apiDescriptions (configuration at-

tribute), 42
configuration.emitter (configuration attribute), 41
configuration.endpoint (configuration attribute), 41
configuration.path (configuration attribute), 41

R
RFC

RFC 6570, 13, 81
RFC 6901, 83
RFC 7231, 14

98 Index

	Features
	Supported API Description Formats
	Supported Hooks Languages
	Supported Systems

	Contents
	Installation
	Docker
	Docker Compose

	npm
	Installing Node.js and npm
	Installing Dredd
	Adding Dredd as a dev dependency

	Quickstart
	Install Dredd
	Document Your API
	Implement Your API
	Test Your API
	Configure Dredd
	Use Hooks
	Advanced Examples

	How It Works
	Versioning
	Execution Life Cycle
	Automatic Expectations
	Response Headers Expectations
	Response Body Expectations
	API Blueprint
	OpenAPI 2
	Gavel’s Expectations

	Custom Expectations

	Making Your API Description Ready for Testing
	URI Parameters
	Request Headers
	Request Body
	API Blueprint
	OpenAPI 2

	Empty Response Body

	Choosing HTTP Transactions
	API Blueprint
	OpenAPI 2

	Security
	Using HTTP(S) Proxy

	How-To Guides
	Isolation of HTTP Transactions
	Example
	API Blueprint
	OpenAPI 2

	Testing API Workflows
	API Blueprint Example
	Writing Hooks

	OpenAPI 2 Example
	Writing Hooks

	Making Dredd Validation Stricter
	Avoiding Additional Properties
	Requiring Properties
	Validating Structure of Array Items
	Validating Specific Values

	Integrating Dredd with Your Test Suite
	Continuous Integration
	.circleci/config.yml Configuration File for CircleCI
	.travis.yml Configuration File for Travis CI

	Authenticated APIs
	Sending Multipart Requests
	Sending Form Data
	Working with Images and other Binary Bodies
	Binary Request Body
	API Blueprint
	OpenAPI 2
	Hooks

	Binary Response Body
	API Blueprint
	OpenAPI 2

	Hooks

	Multiple Requests and Responses
	API Blueprint
	OpenAPI 2

	Using Apiary Reporter and Apiary Tests
	Saving Test Reports under Your Account in Apiary

	Example Values for Request Parameters
	Removing Sensitive Data from Test Reports
	Sanitation of the Entire Request Body
	Sanitation of the Entire Response Body
	Sanitation of a Request Body Attribute
	Sanitation of a Response Body Attribute
	Sanitation of Plain Text Response Body by Pattern Matching
	Sanitation of Request Headers
	Sanitation of Response Headers
	Sanitation of URI Parameters by Pattern Matching
	Sanitation of Any Content by Pattern Matching
	Sanitation of Test Data of Passing Transaction
	Sanitation of Test Data When Transaction Is Marked as Failed in ‘before’ Hook
	Sanitation of Test Data When Transaction Is Marked as Failed in ‘after’ Hook
	Sanitation of Test Data When Transaction Is Marked as Skipped
	Ultimate ‘afterEach’ Guard Using Pattern Matching
	Sanitation of Test Data of Transaction With Secured Erroring Hooks

	Command-line Interface
	Usage
	Arguments
	Configuration File
	CLI Options Reference

	Using Dredd as a JavaScript Library
	Configuration Object for Dredd Class

	Hooks
	Getting started
	Writing hooks
	Running Dredd with hooks

	Supported languages
	Writing Dredd Hooks In Node.js
	Usage
	API Reference
	Sync API
	Async API

	Examples
	How to Skip Tests
	Sharing Data Between Steps in Request Stash
	Failing Tests Programmatically
	Using Chai Assertions
	Modifying Transaction Request Body Prior to Execution
	Modifying Multipart Transaction Request Body Prior to Execution
	Adding or Changing URI Query Parameters to All Requests
	Handling sessions
	Remove trailing newline character in expected plain text bodies
	Using Babel
	Using CoffeScript

	Writing Dredd Hooks In Go
	Installation
	Usage
	API Reference
	Runner Callback Events
	Using the Go API

	Examples
	How to Skip Tests
	Failing Tests Programmatically
	Modifying the Request Body Prior to Execution

	Writing Dredd Hooks In Perl
	Installation
	Usage
	API Reference
	Using Perl API

	Examples
	How to Skip Tests
	Sharing Data Between Steps in Request Stash
	Failing Tests Programmatically
	Modifying Transaction Request Body Prior to Execution
	Adding or Changing URI Query Parameters to All Requests
	Handling sessions
	Remove trailing newline character in expected plain text bodies

	Writing Dredd Hooks In PHP
	Installation
	Requirements

	Usage
	API Reference
	Using PHP API

	Examples
	How to Skip Tests
	Failing Tests Programmatically
	Modifying Transaction Request Body Prior to Execution
	Adding or Changing URI Query Parameters to All Requests
	Handling sessions

	Writing Dredd Hooks In Python
	Installation
	Usage
	API Reference
	Using Python API

	Examples
	How to Skip Tests
	Sharing Data Between Steps in Request Stash
	Failing Tests Programmatically
	Modifying Transaction Request Body Prior to Execution
	Adding or Changing URI Query Parameters to All Requests
	Handling sessions
	Remove trailing newline character in expected plain text bodies

	Writing Dredd Hooks In Ruby
	Installation
	Usage
	API Reference
	Using Ruby API

	Examples
	How to Skip Tests
	Sharing Data Between Steps in Request Stash
	Failing Tests Programmatically
	Modifying Transaction Request Body Prior to Execution
	Adding or Changing URI Query Parameters to All Requests
	Handling sessions
	Remove trailing newline character for in expected plain text bodies

	Writing Dredd Hooks In Rust
	Installation
	Usage
	API Reference
	Runner Callback Events
	Using the Rust API

	Examples
	How to Skip Tests
	Failing Tests Programmatically
	Modifying the Request Body Prior to Execution

	Writing a hooks handler for a new language
	What is a hooks handler?
	Hooks handler life cycle
	Implementation guide
	Handling hooks
	TCP socket message format
	Termination

	End-to-end test suite
	Configuration options
	Need help? No problem!

	Transaction names
	Types of hooks
	Hooks inside Docker

	Data Structures
	Transaction (object)
	Transaction Test (object)
	Transaction Results (object)
	Gavel Validation Result Field (object)
	Gavel Error (object)
	Test Runtime Error (object)
	Apiary Reporter Test Data (object)
	Internal Apiary Data Structures
	Apiary Test Run (object)
	Apiary Test Step (object)

	Internals
	Maintainers
	Hall of fame

	Contributing
	Installing Dredd for development
	Commit message format
	GitHub labels
	Programming language
	C++ dependencies
	Supported Node.js versions
	Dependencies
	Versioning
	Testing
	Linting
	Changelog
	Coverage
	Hacking Apiary reporter

	Contributing to documentation
	Building documentation locally
	Installation on ReadTheDocs
	Writing documentation
	Images
	Sphinx extensions
	Redirects

	Windows support
	API description parsing
	Architecture

	Useful Links
	Example Applications
	Index

